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在回流焊工艺中，正确设置炉温曲线对于保证焊接质量至关重要。本文旨在探究

炉温曲线形成的原理，并通过控制小温区温度和过炉速度得到所需求的炉温曲线。

问题一要求给出指定小温区温度和传送带过炉速度下的炉温曲线。本文通过建立

热传导偏微分方程研究炉前区域以及温区间隙的温度分布，并在此基础上利用热传导

方程刻画焊接区域温度随时间的变化。此时描述的焊接区域温度含有两个未知参数，

本文使用附件中所提供的实验数据倒推参数：本文将两个未知参数在一定的范围内取

分点，并把分点组合代入隐式差分格式的焊接区域的热传导方程，计算出一组炉温数

据，并分析它与实验数据的误差，本文寻找误差的最小点，并将分点网格逐渐加细，

最终在细分的网格中找到最优的参数组合作为未知参数的合理估计。在获得参数的估

计值后，再次代入隐式差分格式的焊接区域的热传导方程，即得到问题一条件下的炉

温曲线。

问题二引入了制程界限的概念：在回焊炉电路板焊接生产中，炉温曲线应满足一

定的要求，包括温度上升、下降斜率的范围、温度上升过程中在 150ºC–190ºC时间的
范围、温度超过 217ºC时间的范围、峰值温度的范围，并要求给出在指定小温区温度
下，可以满足制程界限的最大过炉速度。问题二是一个有若干约束条件的最优化问题。

本文将过炉速度在指定范围内取分点，并将分点代入隐式差分格式的焊接区域的热传

导方程，得到一组炉温曲线，判断其是否满足制程界限，最终求得最大的可行速度。

问题三对焊接工艺提出了更高的要求：理想的炉温曲线应使超过 217ºC到峰值温
度所覆盖的面积最小。当各个小温区的温度确定时，可以分析出过炉速度越快，该面

积越小，因此本文将该题转化为在给定小温区温度的条件下求速度的最大值，即问题

二所描述的内容，并在指定范围内变动小温区的温度，以寻找全局的最优解，最终根

据最优解的小温区温度和过炉速度计算出炉温曲线，并计算出相应的面积。

问题四则要求以峰值温度为中心线的两侧超过 217ºC的炉温曲线应尽量对称。为
此，本文计算 217ºC以上数据的偏度。在小温区温度给定时，对于范围内的每一个过
炉速度，均可计算出一条炉温曲线，从而利用 217ºC以上的数据计算出一个偏度。令
小温区温度在指定范围内变动，本文寻找满足制程界限下绝对值最小的偏度，并利用

该偏度对应的小温区温度和过炉速度计算出炉温曲线。
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1 . 1䰤从Ⲻ㜂Ქ

电子制造行业中印刷电路板（PCB）回流焊工艺是 SMT技术重要的一环 [1]，该工

艺需要将安装有各种电子元件的印刷电路板放置在回焊炉中，通过加热，将电子元件

自动焊接到电路板上。回流焊温度曲线实时记录焊接过程温度的变化，印刷电路板上

的温度过高会对元件造成损坏，而温度不足又会造成焊接缺陷，因此正确设置回流焊

温度曲线，是保障焊接质量的前提 [2]。目前，这方面的许多工作是通过实验测试来进

行控制和调整的，而本题旨在通过机理模型来进行分析研究。

1 . 2䰤从Ⲻᨆ࠰

已知某回焊炉内有 11个小温区及炉前区域和炉后区域，且其规格已知：每个小
温区长度为 30.5cm，相邻小温区之间有 5cm的间隙，炉前区域和炉后区域长度均为
25cm。回焊炉启动后，每个小温区内空气的温度会迅速加热至稳定状态，而炉前区域、
炉后区域以及小温区之间的间隙的温度与相邻温区的温度有关，生产车间的温度保持

在 25ºC。焊接区域的厚度为 0.15mm，温度传感器在焊接区域中心的温度达到 30ºC时
开始工作，电路板进入回焊炉开始计时。附件中给出了一次实验中炉温曲线（即焊接

区域中心温度曲线）的数据，以及该实验中各温区设定的温度和传送带的过炉速度。

在第一问中，已知了过炉速度和各温区温度的设定值，需要给出该条件下对应的

炉温曲线以及一些时点的具体数据。我们的思路是利用热传导方程来描述温度的变化，

但焊接区域满足的热传导方程存在未知参数。我们利用实验数据倒推参数，从而获得

第一问中的炉温曲线。

在第二问中，已知了各温区温度的设定值，并且要求满足五个制程界限，在此基

础上需要求出过炉速度的最大值。这是一个最优化问题，我们将过炉速度以小步长取

分点，对于每个过炉速度，利用热传导方程的隐式差分格式描述温度的变化，得出温

度在过程中的一组值，并判断是否满足制程界限。将不满足制程界限的过炉速度舍去，

剩余的最大过炉速度即是我们所求的。

在第三问中，要求炉温曲线超过 217ºC到峰值温度所覆盖的面积最小。这同样是
一个最优化问题，并且我们分析得在给定小温区温度的条件下，过炉速度越快，该面

积越小。因此第三问可转化为求全局的最大过炉速度，从而可以借助第二问的方法完

成求解。

在第四问中，要求以峰值温度为中心线的两侧超过 217ºC的炉温曲线应尽量对称。
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为了判断对称性，我们首先想到利用偏度这个概念，第四问也即在满足制程界限的前

提下寻找绝对值最小的偏度，以及它对应的炉温曲线。

ӂȽ模ශⲺٽ䇴

• 炉前区域、温区间隙的空气，以及焊接区域的电路板都是均匀的；
• 炉前区域、小温区、温区间隙同一竖直线上的空气认为温度是相同的；
• 焊接区域的热交换能力与温度相关，在一定的温度范围内认为是常数；
• 传送带运行平稳，过炉速度在一次工作中认为是常数；
• 焊接区域、炉内空气的初始温度为室温。

пȽㅜਭ䈪᱄

符号 意义

v(x, t) 炉前区域温度

w(x, t) 温区间隙温度

T1 间隙左温区温度

T2 间隙右温区温度

u(x, t) 焊接区域温度

Q 计算数据与实验数据误差的平方和

s 过炉速度

upslopes 基于过炉速度 s的最大温度上升斜率

downslopes 基于过炉速度 s的最小温度下降斜率

peaktemps 基于过炉速度 s的峰值温度

temp1 小温区 1–5的温度

temp2 小温区 6的温度

temp3 小温区 7的温度

temp4 小温区 8–9的温度

S 217ºC以上炉温数据的偏度
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4 . 1䰤从ж

4 . 1 . ᷆࠼॰ตࢃ⚿1

在附件所示的某次实验中，传送带过炉速度为 70cm/min，各温区温度的设定值
分别为 175ºC（小温区 1–5）、195ºC（小温区 6）、235ºC（小温区 7）、255ºC（小温区
8–9）及 25ºC（小温区 10–11）。
在回焊炉启动后，炉前区域的温度受到小温区 1的影响，其温度 v(x, t)满足以下

热传导方程： 
vt − a2vxx = 0

v(x, 0) = 25

v(0, t) = 25

v(25, t) = 175

其中 x轴的原点位于炉前区域的左边界，正方向指向小温区 1，如图 1所示。t = 0指

代回焊炉启动的时刻，此时炉前区域中各点的温度均为室温 25ºC，即第二个方程所描
述的内容；而在边界上，我们假定左边界保持室温 25ºC，右边界保持小温区 1的温度
175ºC，即采用第一类边界条件。

图 1 炉前区域示意图

求解此方程，我们令 ṽ = v − (6x+ 25)，则 ṽ满足方程
ṽt − a2ṽxx = 0

ṽ(x, 0) = −6x

ṽ(0, t) = 0

ṽ(25, t) = 0

该方程满足其次边界条件，我们可以得到其解为

ṽ(x, t) =
∞∑
k=1

Ake
−a2( kπ

25 )
2
t sin

kπ

25
x

其中

Ak =
2

25

∫ 25

0

−6ξ sin
kπ

25
ξdξ
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由于题目中假设炉内空气温度会在短时间内达到稳定，我们可以认为这是 t→ +∞
时的状态，而

ṽ(x, t) → 0, t→ +∞

因此有

v(x, t) → 6x+ 25, t→ +∞

即距离炉前区域左边界 xcm处的空气在短时间内温度达到 (6x+ 25)ºC。

4 . 1 . 2⑟॰䰪䳏᷆࠼

对于小温区之间的间隙，其温度与相邻温区的温度有关，且在回焊炉启动后短时

间内达到稳定。假设左温区的温度为 T1，右温区的温度为 T2，间隙温度为 w(t, x)，我

们建立热传导方程对间隙温度进行分析，w(t, x)应满足以下方程：
wt − c2wxx = 0

w(x, 0) = 25

w|x=0 = T1

w|x=5 = T2

其中 t = 0位于回焊炉启动的时刻，x轴原点位于间隙左侧边界，正方向指向右侧边界，

如图 2所示。

图 2 温区间隙示意图

将边界条件齐次化，我们令 w̃ = w −
[
T2 − T1

5
x+ T1

]
，则 w̃满足方程



w̃t − c2w̃xx = 0

w̃(x, 0) = 25−
[
T2 − T1

5
x+ T1

]
w̃|x=0 = 0

w̃|x=5 = 0

由于题目假设炉内空气温度会在短时间内达到稳定，我们需要考虑 t → +∞时的
情形，而同炉前区域的分析可知，w̃(x, t)衰减地趋于零，因此

w(x, t) → T2 − T1
5

x+ T1, t→ ∞
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即距离温区间隙左边界 xcm处的空气在短时间内温度达到
(
T2 − T1

5
x+ T1

)
ºC。

基于该式也可以发现，当相邻温区温度相等，即 T1 = T2时，间隙的温度处处与相

邻温区相同。

4 . 1 . 3❀᧛॰ต᷆࠼

对于焊接区域，由于其有 0.15mm的厚度，我们也需要通过热传导方程描述其温
度的变化过程，设焊接区域进入回焊炉的时刻为 t = 0，设焊接区域（物体）的温度为

u(x, t)，其中 x轴的原点位于焊接区域最低端，正方向指向上方。如图 3所示。

图 3 焊接区域示意图

由于我们能控制的是与焊接区域接触的小温区（介质）的温度 u1，其与焊接区域

表面的温度 u往往并不相同，根据牛顿定律：从物体流到介质中的热量和两者的温度

差成正比：

dQ = k1(u− u1)dxdt

其中 k1成为热交换系数，取正值。再由傅里叶定律，有

dQ = −k∂u
∂n
dxdt
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因此

−k∂u
∂n
dxdt = k1(u− u1)dxdt

即

k1u+ k
∂u

∂n
= k1u1

由于此处是一维的情形，故有

∂u

∂n
|x=0 = −ux|x=0

∂u

∂n
|x=0.15 = ux|x=0.15

令 h =
k1
k
，又对于在传送带上移动的电路板焊接区域来说，其面对的小温度的温度 u1

是随时间变化的，且依赖于过炉速度，不妨令 u1 = fs(t)，其中 s为过炉速度，则有
ut − b2uxx = 0

u(x, 0) = 25

−ux + hu|x=0 = hfs(t)

ux + hu|x=0.15 = hfs(t)

(1)

在该方程中，b2 和 h是两个需要确定的系数，我们利用实验数据来推断出这两个

系数的值。根据假设，h与温度有关，我们认为它在炉前区域至小温区 5，小温区 5至
小温区 9，小温区 9至炉后区域为三个不同的常数。根据上述推导，我们可以获得整个
加热至冷却过程中焊接区域面对的温度，因此我们可以利用实验数据来反推系数 b2 和

h。

利用隐式差分将方程 (1)离散化 [3]，有

un+1
i − uni
∆t

= b2
un+1
i+1 − 2un+1

i + un+1
i−1

(∆x)2

− un1 − un0
∆x

= hfn

un1 − un0
∆x

= hfn

u0i = 25

化简得 

− λun+1
i−1 + (1 + 2λ)un+1

i − λun+1
i+1 = uni

− un1 − un0
∆x

= hfn

un1 − un0
∆x

= hfn

u0i = 25

其中

λ = b2
∆t

(∆x)2
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其可化成方程组

1 + h∆x −1 0 0 · · · 0 0 0

−λ 1 + 2λ −λ 0 · · · 0 0 0

0 −λ 1 + 2λ −λ · · · 0 0 0

· · · · · · · · · ·
· · · · · · · · · ·
· · · · · · · · · ·
0 0 0 0 · · · −λ 1 + 2λ −λ

0 0 0 0 · · · 0 −1 1 + h∆x





un+1
0

un+1
1

un+1
2

·
·
·

un+1
m−1

un+1
m


=



un
0

un
1

un
2

·
·
·

un
m−1

un
m


(2)

其中 ∆x = 1µm，∆t = 0.001s，i = 0, 1, 2 · · · , 151代表焊接区域厚度 0.15mm中的 151
个分点，n = 1, 2, · · · , time

∆t
代表上述三段区域内的时间分点，time为通过某一区域所

需的时间，它与区域的长度和过炉速度有关，fn 代表第 n + 1个时间节点上所对应的

炉前、后区域或小温区或温区间隙的温度。

当 b2 和 h 已知时，通过方程 (2) 可以计算出一组焊接区域中心温度的数据（从
t = 0开始）。将该组数据与实验数据（从 t = 19开始记录）进行比对，并计算公共部

分的误差的平方和。以 tempj 代表计算出的数据，temps代表实验数据，Q代表误差的

平方和，则

Q =
∑

(tempj − tempS)
2

对于三段区域中的每一个，我们尝试划定 b2 和 h的范围，并取等距节点组合一个

网格，计算每个格点上的 Q值，通过寻找最小 Q值所对应的格点，来确定 b2 和 h的

值。

以第一段区域为例（炉前区域至小温区 5），在第一次构造网格的过程中，我
们选取大范围以及大步长，目的是粗略确定最优解的范围，从而为接下来将网格细

分做准备。取 b2 以及 h 的范围为 0–500，步长为 100，得到最小 Q 值对应的格点为

(b2 = 100, h = 100)，如图 4所示。

图 4 粗网格对应的 Q值
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经过几次细分，我们确定 b2的范围为 44.0–44.5，步长为 0.01；h的范围为 9.2–9.3，
步长为 0.01。由此我们得到最小 Q值对应的格点为 (b2 = 44.32, h = 9.2)，如图 5所示。

图 5 细网格对应的 Q值

基于同样的原理，我们得到了第二段区域的 b2 = 95，h = 0.048；第三段区域的

b2 = 35.4，h = 0.05。即第一段区域内焊接区域的温度 u(x, t)满足方程
ut − 44.32uxx = 0

u(x, 0) = 25

−ux + 9.2u|x=0 = 9.2fs(t)

ux + 9.2u|x=0.15 = 9.2fs(t)

(3)

第二段区域内 u(x, t)满足方程
ut − 95uxx = 0

u(x, 0) = ϕs(x)

−ux + 0.048u|x=0 = 0.048fs(t)

ux + 0.048u|x=0.15 = 0.048fs(t)

(4)

其中初值 ϕs(x)依赖于第一段区域的结果。第三段区域内 u(x, t)满足方程
ut − 35.4uxx = 0

u(x, 0) = ψs(x)

−ux + 0.05u|x=0 = 0.05fs(t)

ux + 0.05u|x=0.15 = 0.05fs(t)

(5)

其中初值 ψs(x)依赖于第二段区域的结果。

9



将三段热传导方程利用隐式差分法离散化，在实验给定的条件下，我们可以计算

出一个炉温曲线，其与实验记录的数据对比如下：

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

图 6 计算数据与实验数据的对比图

从图中可以看出我们的模型能较好地模拟温度的变化。

而基于第一问所给的条件，即传送带过炉速度为 78 cm/min，各温区温度的设定值
分别为 173ºC（小温区 1–5）、198ºC（小温区 6）、230ºC（小温区 7）和 257ºC（小温区
8–9），我们得到了如下的炉温曲线：

图 7 第一问条件下的炉温曲线

其中题目要求的时点处的温度如下表所示：

表 1 第一问中指定点处的温度

小温区 3中点 小温区 6中点 小温 7中点 小温区 8结束处

129.5290ºC 169.7739ºC 188.9019ºC 224.9341ºC
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4 . 2䰤从ӂ

在问题二中，各温区温度的设定值分别为 182ºC（小温区 1–5）、203ºC（小温区
6）、237ºC（小温区 7）、254ºC（小温区 8–9），需要确定符合制程界限的最大过炉速
度，其中制程界限如下表所示：

表 2 制程界限

界限名称 最低值 最高值 单位

温度上升斜率 0 3 ºC/s

温度下降斜率 -3 0 ºC/s

温度上升过程中在 150ºC–190ºC的时间 60 120 s

温度大于 217ºC的时间 40 90 s

峰值温度 240 250 s

设过炉速度为 s，当 s给定后 fs(t)得以确定，从而可以通过方程 (3)、(4)、(5)的
隐式差分格式计算出一组离散的炉温数据。在离散的意义下，我们可以计算出温度

上升斜率的最大值 upslopes、温度下降斜率的最小值 downslopes、温度上升过程中在

150ºC–190ºC的时间 time1s、温度大于 217ºC的时间 time2s、峰值温度 peaktemps，它

们都依赖于过炉速度 s。

问题即化为

max s

s.t. 0 ≤ upslopes ≤ 3

− 3 ≤ downslopes ≤ 0

60 ≤ time1s ≤ 120

40 ≤ time2s ≤ 90

240 ≤ peaktemps ≤ 250

由于时间步长 ∆t = 0.001取的足够小，我们可以用该离散的情形近似连续的情形，

将过炉速度从 65cm/min开始以 0.1cm/min为步长取分点，直至 100cm/min，我们求得
过炉速度的最大值约为 84.8cm/min。

11



4 . 3䰤从п

在问题三中，各小温区的温度和传送带的过炉速度都需要自行确定，但要求炉温

曲线满足制程界限，且炉温曲线超过 217ºC到峰值温度所覆盖的面积最小。
当所有小温区的温度确定时，过炉速度对面积的影响可从如下两个方面分析：一

方面，提高过炉速度减少了所用的时间；另一方面，提高过炉速度降低了峰值温度

peaktemps。这两方面共同决定了当小温区温度确定时，过炉速度越快，面积越小。

因此我们可以将问题三转化为在给定小温区温度的前提下求最大过炉速度，这正

是问题二的内容，因此我们可以借用问题二的解题方法。不同的是，在问题三中，我

们还需要在给定范围内变动小温区温度，从而求得全局范围内的最大过炉速度。

这可以用如下的规划问题表示：

max s
s.t. 0 ≤ upslopes ≤ 3

− 3 ≤ downslopes ≤ 0

60 ≤ time1s ≤ 120

40 ≤ time2s ≤ 90

240 ≤ peaktemps ≤ 250

165 ≤ temp1 ≤ 185

185 ≤ temp2 ≤ 205

225 ≤ temp3 ≤ 245

245 ≤ temp4 ≤ 265

其中 temp1 为小温区 1–5的温度，temp2 为小温区 6的温度，temp3 为小温区 7的温
度，temp4为小温区 8–9的温度。

在求出最大的过炉速度 s后，再利用其对应的小温区温度，我们即可通过热传导

方程的隐式差分格式求出炉温曲线，如下图所示：

图 8 最小面积对应的炉温曲线
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其中最小面积对应的温区温度分别如下表所示：

表 3 面积最小时各小温区温度

小温区 1–5 小温区 6 小温 7 小温区 8–9

180.8ºC 204.3ºC 225.0ºC 265.0ºC

对应的过炉速度为 99.3cm/min，此时的面积为 486.4012(s · ºC)。

4 . 4䰤从഑

在问题四中，各温区的温度和传送带的过炉速度依旧需要自行确定，且要求炉温

曲线满足制程界限，同时还希望以峰值温度为中心线的两侧超过 217ºC的炉温曲线应
尽量对称。

为了衡量对称性，我们利用偏度这个概念。

对于给定的小温区温度和过炉速度，我们可以计算出一组炉温数据，取其中 217ºC
以上的数据，计算其偏度 S，我们的目标是寻找全局的偏度绝对值最小点，可用如下

规划问题描述：

minS

s.t. 0 ≤ upslopes ≤ 3

− 3 ≤ downslopes ≤ 0

60 ≤ time1s ≤ 120

40 ≤ time2s ≤ 90

240 ≤ peaktemps ≤ 250

165 ≤ temp1 ≤ 185

185 ≤ temp2 ≤ 205

225 ≤ temp3 ≤ 245

245 ≤ temp4 ≤ 265

65 ≤ s ≤ 100

通过划分网格并逐步加细，我们计算得当过炉速度为 92.1cm/min，且各小温区温
度如下表所示时，偏度 S 的绝对值最小，此时的 S = −0.1362。
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表 4 面积最小时各小温区温度

小温区 1–5 小温区 6 小温 7 小温区 8–9

168.2ºC 185.0ºC 225.0ºC 265.0ºC

在该条件下，217ºC以上的数据分布如下：

190 200 210 220 230 240 250 260
215

220

225

230

235

240

245

图 9 偏度最小时的炉温曲线⡷段

整条炉温曲线如下图所示：

图 10 偏度最小时的炉温曲线
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ӊȽ模ශ䇺ԭ

5 . 1Վ⛯

• 热传导偏微分方程能够反映真实的温度变化。
• 焊接区域的热传导方程使用的第三类边界条件符合实际物理原理。
• 对热传导方程使用的隐式差分格式稳定性好，不受步长的影响，且误差较小，为
O(∆t) +O((∆x)2)。

5 . 2у䏩

• 划分网格求最值的方法速度较慢，可继续改进。
• 焊接区域的热交换能力与温度相关，我们在一定的范围内认为它是一个常数，若做
进一步改进，可以认为它是一个关于温度的连续函数。

৸㘹ᮽ⥤
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䱺ᖋ A MATLAB࠳数 heat1φ䘊ഔㅢж⇫॰ตⲺ⚿⑟数ᦤ

function [u,U] = heat1(a2,h,T,F_vec,dt,dx,v)

%焊接区域经过炉前区域预热区恒温区部分（第一阶段）的偏微分程数值解++

t=floor(197.5/v);

n=t/dt;

m=150/dx;

s=a2*dt/dx^2;

vec1=(1+2*s)*ones(1+m,1);

vec1([1 end])=1+h*dx;

vec2=-s*ones(m+1,1);

vec2(2)=-1;

vec3=-s*ones(m+1,1);

vec3(end-1)=-1;

A=spdiags([vec1 vec2 vec3],[0 1 -1],m+1,m+1);

U=zeros(m+1,n+1);

b=zeros(m+1,1);

U(:,1)=T;

for i=2:n+1

b([1 end])=F_vec(i-1)*h*dx;

b(2:end-1)=U(2:end-1,i-1);

U(:,i)=A\b;

end

u=U(75/dx+1,:)';

䱺ᖋ B MATLAB࠳数 heat2φ䘊ഔㅢӂ⇫॰ตⲺ⚿⑟数ᦤ

function [u,U] = heat2(a2,h,T,F_vec,dt,dx,v)

%焊接区域经过回流区区部分（第二阶段）的偏微分程数值解

t=floor(339.5/v)-floor(197.5/v);

n=t/dt;

m=150/dx;

s=a2*dt/dx^2;

vec1=(1+2*s)*ones(1+m,1);

vec1([1 end])=1+h*dx;

vec1([1 end])=1;
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vec2=-s*ones(m+1,1);

vec2(2)=-1;

vec2(2)=0;

vec3=-s*ones(m+1,1);

vec3(end-1)=-1;

vec3(end-1)=0;

A=spdiags([vec1 vec2 vec3],[0 1 -1],m+1,m+1);

U=zeros(m+1,n+1);

b=zeros(m+1,1);

U(:,1)=T;

for i=2:n+1

b([1 end])=F_vec(i-1)*h*dx;

b(2:end-1)=U(2:end-1,i-1);

U(:,i)=A\b;

end

u=U(75/dx+1,:)';

䱺ᖋ C MATLAB࠳数 heat3φ䘊ഔㅢп⇫॰ตⲺ⚿⑟数ᦤ

function [u,U] = heat3(a2,h,T,F_vec,dt,dx,v)

%焊接区域经过冷却区炉后趋于部分（第三阶段）的偏微分程数值解+

t=floor(435.5/v)-floor(339.5/v);

n=t/dt;

m=150/dx;

s=a2*dt/dx^2;

vec1=(1+2*s)*ones(1+m,1);

vec1([1 end])=1+h*dx;

vec1([1 end])=1;

vec2=-s*ones(m+1,1);

vec2(2)=-1;

vec2(2)=0;

vec3=-s*ones(m+1,1);

vec3(end-1)=-1;

vec3(end-1)=0;

A=spdiags([vec1 vec2 vec3],[0 1 -1],m+1,m+1);

U=zeros(m+1,n+1);
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b=zeros(m+1,1);

U(:,1)=T;

for i=2:n+1

b([1 end])=F_vec(i-1)*h*dx;

b(2:end-1)=U(2:end-1,i-1);

U(:,i)=A\b;

end

u=U(75/dx+1,:)';

䱺ᖋ D MATLAB㝐ᵢ parameter1φ⺤ᇐㅢж⇫॰ต৸数

%确认电路板热传导方程的参数（预热区）

clear

clc

load matlab.mat

T=25;

dt=0.001;

dx=1;

v=70/60;

x=(0:dt:169)*v;

F_vec=f(x);

da2=0.01;

dh=0.01;

a2=44:da2:44.5;

h=9.2:dh:9.3;

[~,M]=size(a2);

[~,N]=size(h);

AAA=zeros(M,N);

for k=1:M

for j=1:N

u =heat1(a2(k),h(j),T,F_vec,dt,dx,v);

u1=reshape(u(2:end),500,338);

u2=zeros(339,1);

u2(1)=u(1);

u2(2:339)=u1(500,:)';

u3=u2(39:end);
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AAA(k,j)=sum((u3-Temp).^2);

end

end

[BBB,tmp]=min(AAA,[],'all','linear');

[tmp1,tmp2]=ind2sub(size(AAA),tmp);

X=da2*(tmp1-1)+a2(1)

Y=dh*(tmp2-1)+h(1)

BBB

surf(h,a2,AAA)

䱺ᖋ E MATLAB㝐ᵢ parameter2φ⺤ᇐㅢӂ⇫॰ต৸数

%确认电路板热传导方程的参数（回流区）

clear

clc

load matlab.mat

a2=44.32;

h=9.25;

T=25;

dt=0.001;

dx=1;

v=70/60;

x=(0:dt:169)*v;

F_vec1=f(x);

[uu,U]=heat1(a2,h,T,F_vec1,dt,dx,v);

T=U(:,end);

x=(169:dt:295)*v;

F_vec2=f(x);

db2=0.2;

dh2=0.001;

b2=93:db2:95;

h2=0:dh2:0.05;

[~,M]=size(b2);

[~,N]=size(h2);

AAA=zeros(M,N);

for k=1:M
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for j=1:N

u = heat2(b2(k),h2(j),T,F_vec2,dt,dx,v);

u1=reshape(u(2:end),500,252);

u2=zeros(253,1);

u2(1)=u(1);

u2(2:253)=u1(500,:)';

u3=u2(1:end);

AAA(k,j)=sum((u3-temp(301:553)).^2);

end

end

uu1=[uu; u(2:end)];

u1=reshape(uu1(2:end),500,590);

u2=zeros(591,1);

u2(1)=uu1(1);

u2(2:591)=u1(500,:)';

[BBB,tmp]=min(AAA,[],'all','linear');

[tmp1,tmp2]=ind2sub(size(AAA),tmp);

X=db2*(tmp1-1)+b2(1)

Y=dh2*(tmp2-1)+h2(1)

BBB

surf(b2,h2,AAA')

䱺ᖋ F MATLAB㝐ᵢ parameter3φ⺤ᇐㅢп⇫॰ต৸数

%确认电路板热传导方程的参数（冷却区）

clear

clc

load matlab.mat

a2=44.32;

h=9.25;

T=25;

dt=0.001;

dx=1;

v=70/60;

x=(0:dt:169)*v;

F_vec1=f(x);
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[uu1,U1]=heat1(a2,h,T,F_vec1,dt,dx,v);

T1=U1(:,end);

x=(169:dt:295)*v;

F_vec2=f(x);

b2=95;

h2=0.048;

[uu2,U2] = heat2(b2,h2,T1,F_vec2,dt,dx,v);

T2=U2(:,end);

x=(295:dt:373)*v;

F_vec3=f(x);

dc2=0.1;

dh3=0.01;

c2=35:dc2:36;

h3=0:dh3:0.2;

[~,M]=size(c2);

[~,N]=size(h3);

AAA=zeros(M,N);

for k=1:M

for j=1:N

u = heat3(c2(k),h3(j),T2,F_vec3,dt,dx,v);

u1=reshape(u(2:end),500,156);

u2=zeros(157,1);

u2(1)=u(1);

u2(2:157)=u1(500,:)';

u3=u2(1:end);

AAA(k,j)=sum((u3-temp(553:709)).^2);

end

end

[BBB,tmp]=min(AAA,[],'all','linear');

[tmp1,tmp2]=ind2sub(size(AAA),tmp);

X=dc2*(tmp1-1)+c2(1)

Y=dh3*(tmp2-1)+h3(1)

BBB

surf(c2,h3,AAA')

21



䱺ᖋ G MATLAB㝐ᵢ question1φ䘊ഔ䰤从ж㔉᷒

%题目一求解（通过已确定的参数求解第一题的答案）

clear

clc

load matlab.mat

a2=44.32;

h1=9.25;

b2=95;

h2=0.048;

c2=35.4;

h3=0.05;

T=25;

T1=173;

T2=198;

T3=230;

T4=257;

T5=25;

f=@(x)((T1-T)/25.*x+T).*(x<=25)+T1.*(x>25&x<=197.5)+((T2-T1)/5.*...

(x-197.5)+T1).*(x>197.5&x<=202.5)+T2.*(x>202.5&x<=233)+((T3-T2)/5.*...

(x-233)+T2).*(x>233&x<=238)+T3.*(x>238&x<=268.5)+((T4-T3)/5.*...

(x-268.5)+T3).*(x>268.5&x<=273.5)+T4.*(x>273.5&x<=339.5)+((T5-T4)/5.*...

(x-339.5)+T4).*(x>339.5&x<=344.5)+T5.*(x>344.5&x<=435.5);

dt=0.001;

dx=1;

v=78/60;

t1=floor(197.5/v);

t2=floor(339.5/v);

t3=floor(435.5/v);

x1=(0:dt:t1)*v;

F_vec1=f(x1);

x2=(t1:dt:t2)*v;

F_vec2=f(x2);

x3=(t2:dt:t3)*v;

F_vec3=f(x3);

[uu1,U1]=heat1(a2,h1,T,F_vec1,dt,dx,v);

T1=U1(:,end);
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[uu2,U2] = heat2(b2,h2,T1,F_vec2,dt,dx,v);

T2=U2(:,end);

[uu3,~] = heat3(c2,h3,T2,F_vec3,dt,dx,v);

uu=[uu1;uu2(2:end);uu3(2:end)];

N=(length(uu)-1)/500;

u1=reshape(uu(2:end),500,N);

u2=zeros(N+1,1);

u2(1)=uu(1);

u2(2:N+1)=u1(500,:)';

plot(0:0.5:(435.5/v),u2)

䱺ᖋ H MATLAB㝐ᵢ question2φ䘊ഔ䰤从ӂ㔉᷒

%问题二求解（离散过炉速度以获得最佳的过炉速度）

clear

clc

load matlab.mat

a2=44.32;

h1=9.25;

b2=95;

h2=0.048;

c2=35.4;

h3=0.05;

T=25;

T1=182;

T2=203;

T3=237;

T4=254;

T5=25;

f=@(x)((T1-T)/25.*x+T).*(x<=25)+T1.*(x>25&x<=197.5)+((T2-T1)/5.*...

(x-197.5)+T1).*(x>197.5&x<=202.5)+T2.*(x>202.5&x<=233)+((T3-T2)/5.*...

(x-233)+T2).*(x>233&x<=238)+T3.*(x>238&x<=268.5)+((T4-T3)/5.*...

(x-268.5)+T3).*(x>268.5&x<=273.5)+T4.*(x>273.5&x<=339.5)+((T5-T4)/5.*...

(x-339.5)+T4).*(x>339.5&x<=344.5)+T5.*(x>344.5&x<=435.5);

dt=0.001;

dx=1;
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vv=(65:0.1:100)/60;

n=length(vv);

for i=1:n

v=vv(i);

t1=floor(197.5/v);

t2=floor(339.5/v);

t3=floor(435.5/v);

x1=(0:dt:t1)*v;

F_vec1=f(x1);

x2=(t1:dt:t2)*v;

F_vec2=f(x2);

x3=(t2:dt:t3)*v;

F_vec3=f(x3);

[uu1,U1]=heat1(a2,h1,T,F_vec1,dt,dx,v);

T1=U1(:,end);

[uu2,U2] = heat2(b2,h2,T1,F_vec2,dt,dx,v);

T2=U2(:,end);

[uu3,~] = heat3(c2,h3,T2,F_vec3,dt,dx,v);

uu=[uu1;uu2(2:end);uu3(2:end)];

N=length(uu);

UU(1:N,i)=uu;

end

[~,n]=size(UU);

QQ=ones(1,n);

dt=0.001;

for i=1:n

k=find(UU(:,i),1,'last');

uu=UU(1:k,i);

K=diff(uu)/dt;

tmp1=logical(uu>=150 & uu<=190);

sum1=sum(tmp1)*dt;

tmp2=logical(uu>217);

sum2=sum(tmp2)*dt;

if max(K)>3 || min(K<-3)

QQ(i)=0;

elseif sum1<60 || sum1>120

QQ(i)=0;
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elseif sum2<40 || sum2>90

QQ(i)=0;

elseif max(uu)<240 || max(uu)>250

QQ(i)=0;

end

end

X=65:0.1:100;

QQ=logical(QQ);

U=X(QQ);

u=max(U);

䱺ᖋ I MATLAB㝐ᵢ question3φ䘊ഔ䰤从п㔉᷒

%题目三求解

clear

clc

load matlab.mat

a2=44.32;

h1=9.25;

b2=95;

h2=0.048;

c2=35.4;

h3=0.05;

T=25;

T1=108.8;

T2=204.3;

T3=225;

T4=265;

T5=25;

f=@(x)((T1-T)/25.*x+T).*(x<=25)+T1.*(x>25&x<=197.5)+((T2-T1)/5.*...

(x-197.5)+T1).*(x>197.5&x<=202.5)+T2.*(x>202.5&x<=233)+((T3-T2)/5.*...

(x-233)+T2).*(x>233&x<=238)+T3.*(x>238&x<=268.5)+((T4-T3)/5.*...

(x-268.5)+T3).*(x>268.5&x<=273.5)+T4.*(x>273.5&x<=339.5)+((T5-T4)/5.*...

(x-339.5)+T4).*(x>339.5&x<=344.5)+T5.*(x>344.5&x<=435.5);

dt=0.001;

dx=1;
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vv=(65:1:100)/60;

n=length(vv);

for i=1:n

v=vv(i);

t1=floor(197.5/v);

t2=floor(339.5/v);

t3=floor(435.5/v);

x1=(0:dt:t1)*v;

F_vec1=f(x1);

x2=(t1:dt:t2)*v;

F_vec2=f(x2);

x3=(t2:dt:t3)*v;

F_vec3=f(x3);

[uu1,U1]=heat1(a2,h1,T,F_vec1,dt,dx,v);

T1=U1(:,end);

[uu2,U2] = heat2(b2,h2,T1,F_vec2,dt,dx,v);

T2=U2(:,end);

[uu3,~] = heat3(c2,h3,T2,F_vec3,dt,dx,v);

uu=[uu1;uu2(2:end);uu3(2:end)];

N=length(uu);

UU(1:N,i)=uu;

end

%求解最快过炉速度

[~,n]=size(UU);

QQ=ones(1,n);

dt=0.001;

for i=1:n

k=find(UU(:,i),1,'last');

uu=UU(1:k,i);

K=diff(uu)/dt;

tmp1=logical(uu>=150 & uu<=190);

sum1=sum(tmp1)*dt;

tmp2=logical(uu>217);

sum2=sum(tmp2)*dt;

if max(K)>3 || min(K<-3)

QQ(i)=0;

elseif sum1<60 || sum1>120
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QQ(i)=0;

elseif sum2<40 || sum2>90

QQ(i)=0;

elseif max(uu)<240 || max(uu)>250

QQ(i)=0;

end

end

X=65:1:100;

QQ=logical(QQ);

U=X(QQ);

u=max(U);

v=u/60;

t1=floor(197.5/v);

t2=floor(339.5/v);

t3=floor(435.5/v);

x1=(0:dt:t1)*v;

F_vec1=f(x1);

x2=(t1:dt:t2)*v;

F_vec2=f(x2);

x3=(t2:dt:t3)*v;

F_vec3=f(x3);

[uu1,U1]=heat1(a2,h1,T,F_vec1,dt,dx,v);

T1=U1(:,end);

[uu2,U2] = heat2(b2,h2,T1,F_vec2,dt,dx,v);

T2=U2(:,end);

[uu3,~] = heat3(c2,h3,T2,F_vec3,dt,dx,v);

uu=[uu1;uu2(2:end);uu3(2:end)];

k1=find(uu>217,1);

[~,k2]=max(uu);

Smin=sum((uu(k1:k2)-217)*dt)

u
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%题目四求解

clear
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clc

load matlab.mat

a2=44.32;

h1=9.25;

b2=95;

h2=0.048;

c2=35.4;

h3=0.05;

T=25;

T1=168.2;

T2=185;

T3=225;

T4=265;

T5=25;

f=@(x)((T1-T)/25.*x+T).*(x<=25)+T1.*(x>25&x<=197.5)+((T2-T1)/5.*...

(x-197.5)+T1).*(x>197.5&x<=202.5)+T2.*(x>202.5&x<=233)+((T3-T2)/5.*...

(x-233)+T2).*(x>233&x<=238)+T3.*(x>238&x<=268.5)+((T4-T3)/5.*...

(x-268.5)+T3).*(x>268.5&x<=273.5)+T4.*(x>273.5&x<=339.5)+((T5-T4)/5.*...

(x-339.5)+T4).*(x>339.5&x<=344.5)+T5.*(x>344.5&x<=435.5);

dt=0.001;

dx=1;

vv=(65:0.1:100)/60;

n=length(vv);

for i=1:n

v=vv(i);

t1=floor(197.5/v);

t2=floor(339.5/v);

t3=floor(435.5/v);

x1=(0:dt:t1)*v;

F_vec1=f(x1);

x2=(t1:dt:t2)*v;

F_vec2=f(x2);

x3=(t2:dt:t3)*v;

F_vec3=f(x3);

[uu1,U1]=heat1(a2,h1,T,F_vec1,dt,dx,v);

T1=U1(:,end);

[uu2,U2] = heat2(b2,h2,T1,F_vec2,dt,dx,v);
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T2=U2(:,end);

[uu3,~] = heat3(c2,h3,T2,F_vec3,dt,dx,v);

uu=[uu1;uu2(2:end);uu3(2:end)];

N=length(uu);

UU(1:N,i)=uu;

end

%求解对称性最好的参数

[~,n]=size(UU);

QQ=ones(1,n);

dt=0.001;

S=nan(1,n);

for i=1:n

k=find(UU(:,i),1,'last');

uu=UU(1:k,i);

K=diff(uu)/dt;

tmp1=logical(uu>=150 & uu<=190);

sum1=sum(tmp1)*dt;

tmp2=logical(uu>217);

sum2=sum(tmp2)*dt;

if max(K)>3 || min(K<-3)

QQ(i)=0;

elseif sum1<60 || sum1>120

QQ(i)=0;

elseif sum2<40 || sum2>90

QQ(i)=0;

elseif max(uu)<240 || max(uu)>250

QQ(i)=0;

else

k1=find(uu>217,1);

k2=find(uu>217,1,'last');

TMP=uu(k1:k2);

[umax,k3]=max(uu);

TMP=TMP-umax;

TMP(1:k3-k1)=-TMP(1:k3-k1);

S(i)=skewness(TMP);

end

end
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[~,tmp]=min(abs(S));

s=S(tmp)

u=65+(tmp-1)*0.1
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