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(正) 倒向随机微分方程组的参数估计及其
应用

摘 要

上世纪 90 年代初，彭实戈与 Pardoux 提出了非线性倒向随机微分方程理
论，在此之后，对正向随机微分方程与倒向随机微分方程相耦合的方程组的研究

逐渐深入，众多学者发现了其在金融、经济等领域的实际应用方面极为关键。但

随之而来的问题是如何估计倒向随机微分方程的参数，因为与正向随机微分方

程不同的是：对于其中的漂移项的构成我们是完全无知的。因此，进入 21 世纪，
(正)倒向随机微分方程的非参数估计方法发展迅速，逐渐形成了以 N-WR、LPR
方法为基础的一系列非参数估计方法。直到近年,学者们致力于估计由 LEVY过
程驱动的倒向随机微分方程的参数。

本文主要介绍了 N-WR 估计方法、LPR 估计方法、Jiang-Knight 方法与当
漂移项有特殊结构时的估计方法，并给出了其在计算蝶式期权上的应用效果，对

比各种估计方法的效果。最后通过倒向随机微分方程数值算法将估计结果与实

际情况相互映证，以评估模型在期权定价中的实际应用。接下来给出全文各章的

主要成果：

第一章介绍了 (正) 倒向随机微分方程组的基本模型与基本定理，包括非线
性 Feymann-Kac 公式、密度函数的核估计方法与估计条件期望的 N-W 方法等。

第二章介绍了 (正) 倒向随机微分方程组的非参数估计方法，包括 N-WR 方
法、LPR方法、Jiang-Knight方法。最后给出了当漂移项有特殊结构时的估计方
法。

第三章主要涉及在标的资产服从几何布朗运动时，其对应的蝶式期权价格

的参数估计。对比 N-WR 方法、LPR 方法、Jiang-Knight 等方法的估计效果。
第四章在第三章的基础上选用数值实验中表现最好的非参估计方法，先介

绍了 (正) 倒向随机微分方程的数值算法，并通过该方法以及选用的非参数方法
模拟实际的期权价格，以评估 (正) 倒向随机微分方程模型在实际期权定价中的
应用效果。

关键词： (正) 倒向随机微分方程组，非参数估计方法，N-WR, LPR, 数值算法
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Nonparametric Estimation Method
And Application Of

Forward-Backward Stochastic
Differential Equations

ABSTRACT

Early 1990s, Peng together with Pardoux proposed the theory of Nonlinear
Backward Stochastic Differential Equations, after which, The theories of Forward-
Backward Stochastic Differential Equations had been obtained by many researchers
who discovered its broad application prospects in finance, economics and many
other fields. However, the question after that is how to estimate the parameters
of the backward stochastic differential equation because of differences between it
and stochastic equations, which means we are completely no idea about the struc-
ture of drift term so that parametric estimation method fails under the circum-
stance. Consequently, in the 21st century, the non-parametric estimation methods
of Forward-Backward Stochastic Differential Equations have developed rapidly,
and a series of non-parametric estimation methods based on the N-WR and LPR
methods have gradually formed. Until recent years, the backward stochastic equa-
tions driven by the LEVY process has been estimated.

This article mainly introduces the N-WR estimation method, the LPR esti-
mation method, the Jiang-Knight method and the estimation method when the
drift term has a special structure, after which gives the consequences of its appli-
cation in calculating butterfly spread option, and then compares those estimation
methods mentioned above. Finally, maps the estimation results to the actual sit-
uation to evaluate the practical application of the model in option pricing. The
following statements are the main results of each chapter of the full text :

The first chapter introduces the basic models and basic theorems of Forward-
Backward Stochastic Differential Equations, including the nonlinear Feymann-
Kac formula, the kernel estimation method of the density function, and the N-W
method for estimating conditional expectations.

The second chapter introduces the non-parametric estimation methods of
(forward) backward stochastic differential equations, including N-WR method,
LPR method, Jiang-Knight method. Finally, the estimation method when the
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drift term has a special structure is given.
The third chapter mainly introduces the nonparametric estimation method

of butterfly spread option price when the underlying asset obeys the geometric
Brownian motion. Then compare the results of N-WR method, LPR method,
Jiang-Knight and other methods.

Chapter four introduces the numerical algorithm of Forward-Backward Stochas-
tic Differential Equations, and simulates the actual option price through this
method and non-parametric method to evaluate the application of Forward-Backward
Stochastic Differential Equations model in option pricing.

Keywords: Forward-Backward Stochastic Differential Equations, Nonparametric
Estimation Method, N-WR, LPR, Numerical Method
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)] (1.1)

倒向随机微分方程 (Backward Stochastic Differential Equations, 以下简称
BSDEs), 即“Pardoux-彭”方程，自 1992 年 Etienne Pardoux 与彭实戈开创了
倒向随机微分方程理论以来，BSDE 被广泛运用于金融 (如衍生品的理论价格求
解)、计量经济学 (如非确定环境下的消费者效用理论 (Duffie, Epstein.1992)) 以
及数学 (如求解一类非线性偏微分方程组 (Pardoux, Peng.1992))等领域。它主要
解决了正向随机微分方程 (Stochastic Differential Equations, 以下简称 SDEs) 无
法通过已知情况反推系统在过去乃至最初状态的问题：从数学定义上讲，SDE是
系统从初始状态出发，在未来选定的观测时间点，系统处在的可能状态；BSDE
是已知系统在某个时间点 (比如时间点 T) 的状态，系统在过去一段时间内的发
展情况。从实际应用领域来看 (以金融市场为例)，BSDE 考察的是想在 T 时间
点资产要到达某个设定的状态，投资者或金融从业者需要在初始时刻进行怎样

的投资选择。而在 1997年，El Karoui et al在研究欧式期权定价的过程中对上述
两个方程做了推广，开创了 (正) 倒向随机微分方程组理论 (Forward-Backward
Stochastic Differential Equations,以下简称 FBSDEs)，它是由一类 SDE与 BSDE
一同耦合而成的随机微分方程组系统，在计量金融范畴内其亦有着广泛的应用。

随着 BSDE 研究的逐渐深入，其参数估计问题在实际应用领域的作用愈发重要，
得到了金融数学领域各位学者的广泛关注，逐渐发展了半参数估计、非参数估计

等方法体系。本文主要研究的便是 FBSDEs 的参数估计问题。
如今对于由布朗运动驱动的 FBSDEs 的非参数估计方法主要有：1)N-WR

方法，参考文献 [1]、[6]、[21] 都给出了其详细说明与证明。2)LPR 方法，参考
文献 [6] 给出了其详细说明。3)Jiang-Knight 方法，参考文献 [1]、[13] 给出了其
详细说明与证明。另外，当漂移项具有特殊结构时，参考文献 [17]给出了特殊情
形下的非参数估计方法。

BSDEs 的数值算法主要分为两类：1) 使用条件期望的近似方法、Itô 积分

积分的 θ 格式近似 BSDE，详细说明可见参考文献 [7]、[20]。2) 使用 PDEs 的
数值解近似 BSDEs，详细说明可见参考文献 [9]
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1.1 SDE、BSDE、FBSDE 的基本模型介绍
1942 年，伊藤清建立了 SDE 理论模型，即著名的 Itô 扩散过程，它有如下

的时间齐次格式：

dXt = µ (Xt) dt+ σ (Xt) dWt (1.2)

与非齐次格式：

dXt = µ (t,Xt) dt+ σ (t,Xt) dWt (1.3)

其中，{W (t)} 是在一个完备的概率空间 (Ω,F ,F,P) 上的布朗运动
1992 年，Pardoux 和 Peng 建立了如下 BSDE 模型：−dYs = g(s, Ys, Zs)ds− ZsdWs

Y (T ) = ξ, s ∈ [t, T ]
(1.4)

其中，ξ 是终端条件，它不一定被视为常数，也有可能是函数或者概率空间

上 FT 可测的随机过程，这一点在 FBSDEs 上会有直观的体现。
1997 年，El Karoui et al 建立了如下格式的 FBSDEs：∀s ∈ [t, T ]

dXs = µ (s,Xs) ds+ σ (s,Xs) dWs

−dYs = g(s,Xs, Ys, Zs)ds− ZsdWs

X(t) = x

Y (T ) = f (XT )

(1.5)

事实上，这是并非完全耦合 (或者说为隔断) 的 FBDEs，更为一般的 (或者
说完全耦合的)FBDEs 有如下形式：∀s ∈ [t, T ]

dXs = µ (s,Xs�Ys�Zs) ds+ σ (s,Xs�Ys�Zs) dWs

−dYs = g(s,Xs, Ys, Zs)ds− ZsdWs

X(t) = x

Y (T ) = f (XT )

(1.6)

(1.4)式与 (1.5)式的区别在于 (以金融市场为例)：(1.5)式相较 (1.4)式描绘
的更多是完备市场上的大宗投资者，诸如投资银行，公募基金等。它们有着更雄

厚的资金与比较好的投资策略以至于可以影响市场价格水平的波动——这一点

从 (1.5) 式的 X(s) 有比较直观的感受。因此 (1.5) 式同样被运用于描述金融市
场大宗投资者的效用函数、最优选择等问题。在某些文献中 FBSDEs 也被视为
一类特殊的 BSDEs

(1.4) 式与 (1.5) 式中 X(s) 被称为正向随机元，Y (s)，Z(s) 被称为倒向随

机元，(Xs, Ys, Zs) 是 FBSDEs 的一组解。µ(· )、g(· ) 是漂移项；σ(· )、Z(s)
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是扩散项。FBSDEs 参数估计方法关注的便是漂移项与扩散项的函数表达或者
在人为选定的时间格点上它们的取值，但在 FBDEs 的参数估计过程中，能直接
观察 (或者说获取到数据) 的只有 (Xs, Ys),Z(s) 是无法被直接观察的，幸运的是
Z(s) 仍然具有马尔可夫性，这使得它可以被视为非参函数被估计。

1.2 FBSDEs 的参数估计方法介绍
本节主要介绍 FBSDEs 的条件估计方法、非参数方法、非线性回归估计方

法。主要涉及到 FBSDEs 与偏微分方程 (Partial Differential Equations, 以下简
称 PDEs) 的关系，高斯核方法、基本的线性回归方法等。

1.2.1 非线性 Feymann-Kac 公式

1992年，Peng提出了非线性 Feymann-Kac公式，建立了 BSDE与 PDE的
相互关系, 对于部分耦合的 FBSDEs(1.4 式)，它与如下 PDE 有关：{

∂u
∂s

+ Lu + g
(
s, x, u, σ(x)T∇u

)
= 0, (x, s) ∈ Rn × [t, T]

u(x,T) = f(x)
(1.7)

其中，(1.4)式中选取的的正向随机元 X(s)是比较简单的时间齐次格式 (1.1
式)，L 是椭圆微分算子：L = M +N

Mu(x) =
1

2
trace

(
a(x)

∂2u

∂x2
(x)

)
, aij(x) =

(
σ(x)σ(x)T

)
i,j

Nu(x) =
n∑

i=1

µi(x)
∂u

∂xi

, u ∈ C2 (Rn)

(1.8)

以及：

u (s,Xs) = Ys, σ(Xs)
T∇u (s,Xs) = Zs, ∀s ∈ [t, T ] (1.9)

进一步的，将它推广到完全耦合的 FBSDEs 情形下有，对于 (1.5) 式 (这里
做了简化，将向量 x 视为一维的)，它与如下的 PDE 有关：

∂

∂s
u(s, x) + Lu+ g(s, x, u, v) = 0, (x, s) ∈ R × [t, T]

v(s, x) = σ(s, x, u, v)
∂

∂x
u(s, x)

u(T, x) = f(x),

(1.10)

其中，

Lu = µ(s, x, u, v)
∂

∂x
u(s, x) +

1

2
σ2(s, x, u, v)

∂2

∂x2
u(s, x) (1.11)
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以及：

u (s,Xs) = Ys, v (s,Xs) = Zs, ∀s ∈ [t, T ] (1.12)

根据非线性 Feymann-kac 公式，可以在随机变量的转移密度函数与漂移项、
扩散项之间搭建关系，下面给出定理：

定理 1 考虑随机微分方程：

dXs = µ (s,Xs) ds+ σ (s,Xs) dWs, ∀s ∈ [t, T ] (1.13)

设有转移密度函数 p(Xs = y|Xt = x)，则该密度函数满足如下的两个偏微分

方程：
∂

∂t
p(t, s, x, y) + µ(s, x)

∂

∂x
p(t, s, x, y) +

1

2
σ2(s, x)

∂2

∂x2
p(t, s, x, y) = 0 (1.14)

以及：

∂

∂s
p(t, s, x, y) = − ∂

∂y
(µ(s, y)p(t, s, x, y)) +

1

2

∂2

∂y2
(
σ2(s, y)p(t, s, x, y)

)
(1.15)

(1.13) 式被称为柯尔莫哥洛夫倒向方程 (Kolmogorov backward equation), 其
由非线性 Feymann-Kac 定理可以立即得到；(1.14) 式被称为柯尔莫哥洛夫前向
方程 (Kolmogorov forward equation)，又称 Fokker-Plank 方程，其证明详见参考
文献 [18]。 □

定理 2 当随机过程 X(s) 是时间齐次时，Fokker-Planck 方程具有如下形式的解:

p (Xs) =
A

σ2 (Xs)
exp

{
2

∫ Xs

x

µ(η)

σ2(η)
dη

}
(1.16)

该定理的证明详见参考文献 [13] □

整理 (1.15) 式并等式两边两边同时对 Xs 求导立即得到：

µ (Xs) =
1

2p (Xs)

d

dXs

[
σ2 (Xs) p (Xs)

]
(1.17)

整理 (1.15) 式并对等式两边同时求定积分有

σ2 (Xs) =
2

p (Xs)

∫ Xs

0

µ(η)p(η)dη (1.18)

(1.15)，(1.16)，(1.17) 在转移密度与漂移项、扩散项之间建立了函数关系，
只需要估计出其中两个，第三个的值便可以立即得到。
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1.2.2 密度函数的核估计方法与 N-W 方法

定理 3 假设满足 1.1 式的时间齐次的随机过程 Xs 有 N 个样本数据：

X1, X2, . . . , XN , 则该随机过程的转移密度函数 p 的估计值 p̂ 有如下形式：

p̂(x) =
1

Nh

N∑
i=1

K

(
Xi − x

h

)
(1.19)

其中,K(· ) 被称为核密度函数，一般它是单峰的偶函数 (也可以是对称函
数)，且是一类概率密度函数，满足在概率空间 (Ω,F ,P) 内有：

∫
Ω
K(η)dη = 1；

h 是一个人为选择的大于 0 的常数，被称为窗宽。
一般使用的核函数为高斯核，它的表达式即为标准正态分布的概率密度函

数：

K(x) =
1√
2π

exp

{
−x2

2

}
(1.20)

更一般的，会用到多元的核函数，如多元正态分布联合密度函数:

K (x1, · · · , xn) =
1

(2π)n/2|Σ| 12
exp

{
−1

2
xTΣ−1x

}
(1.21)

其中,Σ = E[xxT ] = [E[xixj]]n×n。特别的，当 K(· ) 为标准多元正态分布

时 Σ 为 n 阶单位矩阵 □

注：除非特殊说明本文使用的核函数为高斯核

事实上，密度函数的估计可归结为分布函数的假设检验问题，最简便的方法

是通过样本数据出现的频率来估计其概率，但这样的方法要求的样本容量较大，

否则结果会出现较大的系统误差。核密度方法对此方法做出了改进：它通过样本

点 Xi 与观测点 x 在欧式空间上的距离来确定该样本点在估计时的的权重。
使用核方法可以估计条件期望，这是非参数估计的主要方法的基石，说明如

下：

设随机过程 ms 与随机过程 ns 相关，一个 ns 的数据对应唯一一个 ms，它

们都是定义在概率空间 (Ω,F ,P) 上的连续随机过程，h,q 分别是 ms，ns 对应的

窗宽参数，则有：

E(ms | ns = x) =

∫
Ω

msp(ms | ns)dms =

∫
Ω

ms
p(ms, ns)

pn(ns)
dms

=
1

pn(ns)

∫
Ω

msp(ms, ns)dms

=
1

pn(ns)

∫
Ω

msp̂(ms, ns)dms

(1.22)
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又有

p̂(ms, ns) =
1

Nhq

N∑
i=1

K

(
m−mi

h
,
n− ni

q

)

=
1

Nhq

N∑
i=1

1

2π
exp

{
−1

2
[(
m−mi

h
)2 + (

n− ni

q
)2]

}

=
1

Nhq

N∑
i=1

K

(
m−mi

h

)
K

(
n− ni

q

)
(1.23)

因此，将 (1.21) 式代入 (1.20) 式得到：

E(ms | ns) =
1

Nhpn(ns)

N∑
i=1

K

(
n− ni

h

)∫
Ω

ms

q
K

(
m−mi

q

)
dms

=
1

Nhpn(ns)

N∑
i=1

K

(
n− ni

h

)∫
Ω1

(qη +mi)K (η) dη

=
1

Nhpn(ns)

N∑
i=1

K

(
n− ni

h

)
[q

∫
Ω1

ηK (η) dη +mi

∫
Ω1

K (η) dη]

=
1∑N

i=1 K
(
n−ni

h

) N∑
i=1

K

(
n− ni

h

)
[E[η] +mi]

=
1∑N

i=1 K
(
n−ni

h

) N∑
i=1

K

(
n− ni

h

)
mi

(1.24)
其中 Ω1 是做了测度变换 m−mi

q
= η 后得到的概率空间。

上述计算条件期望的方法被称为条件期望的 Nadaraya-Watson 方法，以下
简称 N-W 方法。
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第二章 FBSDEs 的半参数、非参数估计

设有完备的概率空间：(Ω,F ,P),Ws 是空间上的一维布朗运动，在空间内有

有部分耦合的 FBSDEs 满足：

dXs = µ (s,Xs) ds+ σ (s,Xs) dWs

−dYs = g(s,Xs, Ys, Zs)ds− ZsdWs

X(t) = x

Y (T ) = f (XT )

(2.1)

2.1 条件期望估计方法

对于 (2.1)式的正向随机生成元 Xs,对于任意函数 f(· )，设有算子 L满足：

Lf(s, x) = lim
∆s→0

1

∆s
{E [f (s+∆s,Xs+∆s)− f (s,Xs) | Xs = x]} (2.2)

又根据非线性 Feymann-kac 定理, 整理 (2.2) 式，得到：

Lf(s, x) = ∂

∂s
f(s, x) + µ(s, x)

∂

∂x
f(s, x) +

1

2
σ2(s, x)

∂2

∂x2
f(s, x) (2.3)

对条件期望 E [f (s+∆s,Xs+∆s) | Xs] 在点 s 处做一阶 Taylor 展开得到：

E [f (s+∆s,Xs+∆s) | Xs] = f(s,Xs) + Lf(s, x)∆s+O(∆s)

= E[f(s,Xs)] + Lf(s, x)∆s+O(∆s)
(2.4)

若令 f(s, x) = x，联立 (2.3)，(2.4) 式可以得到：

µ (Xs) =
1

∆s
E [Xs+∆s −Xs | Xs] +O(∆s) (2.5)

若令 f(s, x) = (x−Xs)
2，联立 (2.3)，(2.4) 式得到：

E [(x−Xs+∆s)
2 − (x−Xs)

2 | Xs]

∆s
+O(∆s) = 2 (x−Xt)µ(x) + σ2(x) (2.6)

观察 (2.6) 式得到，当自变量 x 取值 Xs 时，得到：

σ2(x) =
E [(x−Xs+∆s)

2 | Xs]

∆s
+O(∆s) (2.7)

同理，对于 (2.1) 式的倒向随机生成元 Ys, Zs 成立如下关系式：

lim
∆s→0

E [f (s, Ys+∆s)− f (s, Ys) | Xs = x]

∆s

8
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=
∂f(s, y)

∂s
− g (s, x, y, z)

∂f (s, y)

∂y
+

1

2
z2
∂2f (s, y)

∂y2
(2.8)

因此，令 f(s, y) = −y 得到：

g (s,Xs, Ys, Zs) =
1

∆s
E [Ys − Ys+∆s | Xs] +O(∆s) (2.9)

令 f(s, y) = (y − Yt)
2 得到：

Zs =
1

∆s
E
[
(Ys − Ys+∆s)

2 | Xs

]
+O(∆s) (2.10)

使用 N-W 方法估计 (2.5)、(2.7)、(2.9)、(2.10) 式中的条件期望得到
µ(· ),σ2(· ),g(· ),Z2(· ) 的估计 µ̂(· ),σ̂2(· ),ĝ(· ),Ẑ2(· )：

µ̂(x) =
1

∆s
∑N

i=1 K
(
x−Xi

h

) N−1∑
i=1

K

(
x−Xi

h

)
(Xi+1 −Xi)

σ̂2(x) =
1

∆s
∑N

i=1 K
(
x−Xi

h

) N−1∑
i=1

K

(
x−Xi

h

)
(Xi+1 −Xi)

2

ĝ(s, x, · , · ) =
1

∆s
∑N

i=1 K
(
x−Xi

h

) N−1∑
i=1

K

(
x−Xi

h

)
(Yi − Yi+1)

Ẑ2
s =

1

∆s
∑N

i=1 K
(
x−Xi

h

) N−1∑
i=1

K

(
x−Xi

h

)
(Yi − Yi+1)

2

(2.11)

这里分子在估计边际密度函数时，只使用前 N-1 个样本，以免超出向量范
围。

比较麻烦的一点是：连续随机过程 Zs 是只依赖于正向随机生成元 Xs 还是

由时间 s 与 Xs 共同作用的，这需要分开讨论，因此 (2.11) 式中的 Ẑ2
s 是不完

整的。事实上，Ẑ2
s 应当满足：

1）当随机过程 Zs 只依赖于 Xs 的时候:

Ẑ2
s =

1

∆s
∑N

i=1 K
(
x−Xi

h

) N−1∑
i=1

K

(
x−Xi

h

)
(Yi − Yi+1)

2 (2.12)

2）当 Zs 是 Xs，s 的二元函数时，采用二元标准正态分布密度函数作为核

函数，其分解可见 1.21 式，得到结论：

Ẑ2(s, x) =
1

∆s

N−1∑
i=1

K
(

s−si
hs

)
K
(

x−Xi

qx

)
∑N

i=1 K
(

s−si
hs

)
K
(

x−Xi

qx

)(Yi − Yi+1)
2 (2.13)

要想得到参数的估计值，还需要判断 σ̂(· ), Ẑ(· ) 的正负性，在参考文献
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[3]、[6]、[17] 中的数值例子 σ̂(· ), Ẑ(· ) 总是非负的，通常而言，对于非耦

合的 FBSDEs, 或者说对于小额的投资者，波动项 (扩散项) 一般是非负的，但这
并不能涵盖所有情形，这需要进一步的讨论。在文献 [21]中给出了如下方法：设
时间 [t, T ] 上有划分 {t0, . . . , tn}, 设 λ = max {ti+1 − ti} (i = 1, 2, . . . , n − 1)，对

Xs, Ys 做交互变差有：

[Xs, Ys]T = lim
λ→0

n−1∑
i=0

[X(ti+1)−X(ti)][Y (ti+1)− Y (ti)]

=

∫ T

t

dXsdYs =

∫ T

t

σ(s,Xs)Zsds

(2.14)

由 (2.14) 式立即得到：

σ̂s = sign {(Xs+∆s −Xs)(Ys+∆s − Ys)}
√

σ̂2
s

Ẑs = sign {(Xs+∆s −Xs)(Ys+∆s − Ys)}
√
Ẑ2

s

(2.15)

其中，sign(· ) 是阶跃函数 (Step Function)，其表达式为：

sign(x) =


1, x > 0

0, x = 0

−1, x < 0

事实上，(2.15) 式从实际应用领域理解比较直观。如对于欧式期权，其相对
于对应的有价证券价格常常呈现正相关 (或负相关)，因此对于看涨期权 (或看跌
期权) 通常有波动项 Zs ≥ 0(或 Zs ≤ 0), 即 dXs, dYs 同号 (或异号)。

2.2 非参数线性回归方法

线性回归方法的基本思想其实来自于多元线性回归模型的参数估计方法，其

简要说明如下：模仿 (2.4) 式，对条件期望 E [Ys | Xs = x] 在点 Xi(i = 1. . . . , N)

附近的小 δ 邻域处做 Taylor 展开得到：

E [Yi+δ | Xi = x] = Y (Xi) + [LY (Xi)](x−Xi) + · · ·+ 1

n!
[L(n)Y (Xi)] (x−Xi)

n

(2.16)
整理 (2.16) 式得到：

E [Yi+δ | Xi]− Yi = [LY (Xi)](x−Xi) + · · ·+ 1

n!
[L(n)Y (Xi)] (x−Xi)

n (2.17)

其中，L(n)Yi 的意思是条件期望 E [Ys | Xs = x] 的 n 阶导。
不难发现 (2.17) 式的左端其实就是 dYs = Ys+δ − Ys(当 | δ |< ∆s), 这便给使

用线性回归方法逼近未知参数提供了理论依据。

设 ∀Xi, 其在用 2.17 式估计出的 ∆Yi = Yi+1 − Yi 在最终结果 ∆Y 中占据的

10
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权重为 qi(
∑N−1

i=1 qi = 1)——意思是，最后得到的估计结果应该是对下述模型的

加权最小二乘问题：
N−1∑
i=1

vie
2
i =

N−1∑
i=1

vi

[
∆Yi −

(
β̂0 + β̂1(x−Xi) + · · ·+ β̂k(x−Xi)

n
)]2

(2.18)

即得到 ∆Y 与样本之间的无偏表达式为：

E (∆Y | X1, X2, · · · , XN) = QXβw (2.19)

或者线性表达式：

∆Y = QXβw + e (2.20)

其中，

∆Y =


∆Y1

∆Y2

...
∆YN−1

 , X =


1 x−X1 · · · (x−X1)

n

1 x−X2 · · · (x−X2)
n

... ... ... ...
1 x−XN−1 · · · (x−XN−1)

n


以及待估参数 βw、残差 e 以及权数矩阵：

βw =



β0

β1

β2

...
βn


, e =


e1

e2
...

eN−1

 , Q =


q1

q2
. . .

qN−1


式 (2.20) 其实就是加权多元线性回归模型的矩阵表达式，进而用 kernel 函

数来表示权重，即令：

qi = K(
x−Xi

h
) (2.21)

求解 (2.18) 式的最小二乘问题，即求解：
∂

∂β̂w

(∆Y −QXβ̂w)
T (∆Y −QXβ̂w) = 0 (2.22)

即:
∂

∂β̂w

(∆YT∆Y − β̂w

T
XTQT∆Y −∆YTQXβ̂w + β̂w

T
XTQTQXβ̂w) = 0 (2.23)

求解 (2.23) 式得到 βw 的估计 β̂w 为：

β̂w =
(
XTQX

)−1 XTQY (2.24)
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令 n=1, 对比 (2.20) 式与 dYs 的表达式，得到 g(· ), Z2(· ) 的估计：

ĝ (s, x) = β̂0 =
1

∆s

N−1∑
i=1

vi (x) (Yi − Yi+1)∑N
i=1 vi (x)

Ẑ2 (s, x) = β̂1 =
1

∆s

N−1∑
i=1

vi (x) (Yi − Yi+1)
2∑N

i=1 vi (x)

(2.25)

其中

vi (x) = K(
x−Xi

h
) [m2 (x)− (Xi − x)m1 (x)]

mk (x) =
N∑
i=1

K(
x−Xi

h
) (Xi − x)k , k = 1, 2

(2.26)

同理，对 Xs 使用同样的 Taylor 展开，估计其多元线性回归模型得到：

µ̂ (s, x) =
1

∆s

N−1∑
i=1

vi (x) (Xi −Xi+1)∑N
i=1 vi (x)

σ̂2 (s, x) =
1

∆s

N−1∑
i=1

vi (x) (Xi −Xi+1)
2∑N

i=1 vi (x)

(2.27)

2.3 Jiang-knight 方法
Jiang and Knight(1997) 提出了一种新的估计 SDEs 参数的方法，它先使用

非参数方法，如 2.1、2.2 节的方法估计 σ2(x); 再用 N-W 方法估计 Xs 的转移密

度函数；最后，利用 µ(x), σ(x) 之间的关系 (1.15 式) 得到 µ(x) 的估计。即：

µ̂(x) =
1

2p (Xs | Xt)

d

dx

[
σ̂2 (x) p (Xs | Xt)

]
=

1

2
[
dσ̂2 (x)

dx
+ σ̂2 (x)

p′(x)

p(x)
]

= σ̂ (x) σ̂′ (x) +
1

2
σ̂2 (x)

p′(x)

p(x)

(2.28)

又知道使用 kernel 估计 σ2(x) 有：

σ̂2(x) =
N−1∑
i=1

K
(
x−Xi

h

)
(Xi+1 −Xi)

2

∆s
∑N

i=1 K
(
x−Xi

h

)
dσ̂2 (x)

dx
=

1

h∆s

[
∑N−1

i=1 K ′ (x−Xi

h

)
(Xi+1 −Xi)

2][
∑N

i=1 K
(
x−Xi

h

)
]

[
∑N

i=1 K
(
x−Xi

h

)
]2

− 1

h∆s

[
∑N−1

i=1 K
(
x−Xi

h

)
(Xi+1 −Xi)

2][
∑N

i=1 K
′ (x−Xi

h

)
]

[
∑N

i=1 K
(
x−Xi

h

)
]2

(2.29)
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用 N-W 估计转移密度得到：

p′(x)

p(x)
=

1

h

∑N
i=1 K

′ (x−Xi

h

)∑N
i=1 K

(
x−Xi

h

) (2.30)

联立 (2.26)，(2.27)，(2.28) 得到：

µ̂(x) =
1

2h∆s

[
∑N−1

i=1 K ′ (x−Xi

h

)
(Xi+1 −Xi)

2][
∑N

i=1 K
(
x−Xi

h

)
]

[
∑N

i=1 K
(
x−Xi

h

)
]2

(2.31)

现在要将该方法推广到部分耦合的 FBDSEs 上, 需要确定 g(· ), z(· ) 之间

的关系, 不难得到，转移密度函数 p(Ys = y | YT = y0, Xs)(为了与 Xs 的转移密度

相区分，记为 P) 满足如下定理：

定理 4 P 仍旧满足柯尔莫哥洛夫前向方程 (Fokker-Plank Equation)，即：
∂

∂s
P(T, s, y0, y,Xs) =

∂

∂y
(g(s,Xs, y, Z)P(T, s, y0, y,Xs))

+
1

2

∂2

∂y2
(
Z2(s,Xs)P(T, s, y0, y,Xs)

) (2.32)
□

由定理 4 可以得到：

ĝ(x�y) = Ẑ2(x)

2P
d

dy
(P) (2.33)

使用 kernel 估计 P 得到：

P =
p (Ys, YT , Xs)

p (YT , Xs)
=

p (Ys, XT , Xs)

p (XT , Xs)

=
N∑
i=1

K

(
y −Xi

hy

) (2.34)

2.4 插入终端条件的估计方法

在实际应用领域，若使用 N-WR方法或者 LPR方法，不难发现在参数估计
时默认了 g(· ) 与 Z(· ) 是相互独立的，这与实际情况相悖；而 Jiang-Knight
方法得到的是 g 关于 x,y 的二元函数，这便对实际操作造成了一定的障碍。因
此，Zhang and Lin 在文献 [17] 中提出了插入终端条件的估计方法。有 Ys 的积

分形式：

Ys = f(XT ) +

∫ T

s

g(t,Xt, Yt, Zt)dt+

∫ T

s

ZtdWt (2.35)

为了与终端条件搭建关系，消除布朗运动的未知影响，暂时假设 T −s < ∆s,
或 T − s = O(∆s)。由 Itô 积分的定义，对 (2.35) 式进行离散化得到：
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
Yi = f(XT ) +

N∑
j=i

g(sj, Xj, Yj, Zj)∆j + ϵi

ϵi =
N∑
j=i

Zj(WT −Wsj)

(2.36)

不难得到，ϵi 满足：

E (ϵi) = 0, Var (ϵi) =
n∑

j=i

∆jZ
2
j (2.37)

其中，∆j = T − sj

与 Jiang-knight 方法类似，先使用 N-WR 方法或者 LPR 方法估计 Z(· )

得到 Ẑs, 再去估计 g。这可以归结为如下问题：

min
n−1∑
i=1

(
Yi − f(XT )−

n∑
j=i+1

g(sj, Xj, Yj, Ẑj)∆j

)2

(2.38)

(2.38) 式面临的问题是终端条件 f(XT ) 是一个随机变量 (虽然有样本数据
XN = XT , 但样本仅是 SDE 解的一条轨道，这样估计的 g 不具有普遍使用性)，
因此，需要反复测试 SDE 算法得到一个容量为 n 的 XT 的样本 (XT1 , . . . , XTn)，

令 ˆf(XT ) =
∑n

i=1 XTi
,接下来可通过求导来求解该无条件极值问题，这里不再赘

述。而可以进一步讨论的是，当 g 具有更为特殊的结构时，是否有更直观、准确
的方法估计它。

比如，g 是 Ys, Zs 的线性函数：

g(· ) = β1Ys + β2Zs (2.39)

此时，(2.38) 式退化为求解二元线性回归模型的参数问题。由 2.2 节的讨论
可以得到： (

β0

β1

)
= (V TV )−1V TY (2.40)

其中，

Y =


Y1 − f̂

· · ·
YN − f̂

 , V =


∑N

i=1 Yi∆j

∑N
i=1 Ẑi∆j

· · · · · ·
YN∆j ẐN∆j

 . (2.41)

该方法仍存在的问题是：当 T 的跨度太大时，会使得 ∆j 的值太大进而影

响模型的估计效果，Zhang 和 Lin(2014) 提出了如下的解决方案：
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step.1 先在一个小区间 [t, sk](t < sk < T )，认为在该区间上时间跨度足够

小，在该区间上使用 (2.40) 式上得到粗略的估计：

ĝ(· ) = β
(k)
0 Ys + β

(k)
1 Zs (2.42)

step.2 利用 Ys 的微分表达式，对其离散化后得到：

Yi+1 = −
((

β
(k)
0 − 1

∆s

)
Yi + β

(k)
1 Zi

)
∆s+ Zi (Wi+1 −Wi) (2.43)

且有：

Var (Yi+1 | Yi, Zi) = Var
(
−
((

β
(k)
0 − 1

∆s

)
Yi + β

(k)
1 Zi

)
∆s+ Zi (Wi+1 −Wi)

)
(2.44)

当 Yi, Zi 已知时，(2.44) 式的 ∆s 项系数为常数，(2.44) 式变为：

Var (Yi+1 | Yi, Zi) = Var (Zi (Wi+1 −Wi)) = ∆sZ2
i (2.45)

根据 Moris(1982) 的研究，(2.44) 式可用一个二次函数近似, 即：

∆sZ2
i = a1+a2

((
β
(k)
0 − 1

∆s

)
Yi + β

(k)
1 Zi

)
∆s+a3

((
β
(k)
0 − 1

∆i

)
Yi + β

(k)
1 Zi

)2

∆s2

(2.46)
step.3 整理 (2.46) 式可以得到如下表达式：

Z2
i = γ1 + γ2Zi + γ3Yi (2.47)

在小区间 [t, sk] 上使用线性回归方法估计 γ1, γ2, γ3，得到 γ̂1, γ̂2, γ̂3

step.4 在区间 [sk�T ] 上使用 (2.43) 式计算一系列新的 (Ys, Zs), 与原来真实
的 (Ys, Zs) 相区分，记为 (Ŷs, Ẑs), 即：

Ŷi+1 = −
((

β
(k)
0 − 1

∆s

)
Ŷi + β

(k)
1 Ẑi

)
∆s

Ẑi+1 =
γ̂2
2

±
√

γ̂1 +
γ̂2
2

4
+ γ̂3Ŷi

(2.48)

step.5 在大区间 [t�T ] 上，使用 (2.40) 式对 [t�sk] 上的 (Ys, Zs) 与 [sk�T ] 上
的 (Ŷs, Ẑs) 进行估计。
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第三章 数值例子

3.1 蝶式期权下的参数估计

设有完备的概率空间：(Ω,F ,P),Ws 是空间上的一维布朗运动。Ps 是国债价

格，其服从常微分方程：

dPs = r(s)Psds (3.1)

解之得：

Ps = P0exp

{∫ s

0

r(η)dη

}
(3.2)

其中，r(s) 是短期利率，P0 = P (0)。

Xs 是股价过程，其服从广义几何布朗运动：{
dXs = b(s)Xsds+ σ(s)XsdWs

X0 = x, s ∈ [0, T ]
(3.3)

由随机分析的知识，Xs 有解析解：

X(s) = X0 exp
{∫ T

0

b(s)− 1

2
σ2(s)ds+

∫ T

0

σ(s)dW (s)

}
(3.4)

Ys 是 Xs 对应的蝶式差价看涨期权价格，其表达式如下：

dYs = r(s)Ys − (b(s)− r(s))σ−1(s)Zsds+ ZsdWs (3.5)

蝶式差价看涨期权是一种特殊的期权套利方式，其事实上是由标的资产的

两个欧式看涨期权与一个欧式看跌期权组成，即其在期末的价格满足：

YT = (XT −K1)
+ − 2(−XT +K2)

+ + (XT −K3)
+ (3.6)

且一般情况下 K1, K2, K3 满足 K2 =
K1+K3

2

导出 (3.5) 式的真实表达有两种方法：

1）假设市场中有投资者同时投资国债以及股票，Ys 表示投资者于时刻 s 在
债券-股票市场中所持有的财富。且其满足自融资条件，即其资金只在债券-股票
市场中使用，不论盈亏既不追加投入亦不取出。使用数学表达为：

∆NP
s Ps+1 +∆NX

s Xs+1 = 0 (3.7)

其中，∆NP
s = NP

s+1 −NP
s ；∆NX

s = NX
s+1 −NX

s 。NP
s , N

X
s 分别是时刻 s 投

16
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资者持有的国债份额与股票份额。根据 El Karoui et al(1997) 得到的结果有：

dYs =
[
r(s)Ys + (b(s)− r(s))NX

s Xs

]
ds+ σ(s)NX

s XsdWs (3.8)

2) 假设蝶式差价看涨期权未来的期权价值为 Ys = c(s,Xs), 假设短期利率在
短时间内保持为常数 r 不变，由 itô 公式以及鞅表示定理得到贴现的期权价值满

足 PDE:

rc(s,Xs) = cs(s,Xs) + bXscx(s,Xs) +
1

2
σ2X2

s cxx(s,Xs)

c(T,XT ) = (XT −K1)
+ − 2(K2 −XT )

+ + (XT −K3)
+

0 = lim
X→∞

[
c(s,Xs)− (2Xs − e−r(T−s)(K1 +K3)) + 2(e−r(T−s)K2 −Xs)

]
c(s, 0) = 0

(3.9)

(3.9) 式被称为 Black—Scholes 期权定价方程, Black、Scholes 给出了
PDE3.9 的解。

在本节数值算法中，使用 Eular 法对 Xs 进行离散化, 得到：

Xi+1 = Xi + b(s)Xi∆s+ σ(s)Xiεi
√
∆s, i = 0, 1, · · · , n− 1 (3.10)

其中,εi = 1√
∆s

(Ws+∆s − Ws) ∼ N(0, 1)。并令 b(s) = 0.0012; σ(s) = 0.36；

T = 1；∆s = 0.001 n = 1000；X0 = 10；r(s) 是 CIR 利率过程：

dr(s) = (α− βr(s))ds+ c
√
r(s)dW (s) (3.11)

取 α = 0.2, β = 0.06, c = 0.07�r0 = 0.0219。得到股票价格 Xs 利率 rs 的图

像如图 3.1,3.2 所示：

图 3.1 股票价格 图 3.2 短期利率

由 (3.7) 式以及 Black—Scholes 期权定价方程可以得到离散化后，在时间格
点

17
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处的 Yi 的值：

Yi =XiN
(
di+K1

)
− e−r(T−si)K1N

(
di−K1

)
− 2[−XiN

(
−di+K2

)
+ e−r(T−si)K2N

(
−di−K2

)
]

+XiN
(
di+K3

)
− e−r(T−si)K3N

(
di−K3

) (3.12)

其中，

N(y) =
1√
2π

∫ y

−∞
e−η2/2dη (3.13)

以及：

di±Kj
=

ln (Xi/Kj) + (r ± σ2/2) ((T − si))

σ
√
(T − si)

, j = 1, 2, 3 (3.14)

其中，si 是样本数据 Xi 所处的时刻 s。
又根据得到 Zi 的真实值:

Zi = σXi(N(di+K1
) + 2N(−di+K2

) +N(di+K3
)) (3.15)

并通过 g 的表达式得到漂移项的真实值：

gi = −rYi − (b− r)σ−1Zi (3.16)

取 r = 0.122, K1 = 8, K2 = 10, K3 = 12 由此得到短期内 Xs 对应的蝶式差

价看涨期权价格如图所示：

图 3.3 蝶式差价看涨期权价格

3.1.1 σ(· ), Z(· ) 的参数估计

取经验窗宽 h = 0.25, 分别使用 N-WR 方法与 LPR 方法估计 σ(· ) 得到的
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结果如图 3.4,3.5 所示：

图 3.4 条件期望 N-WR 方法 图 3.5 线性回归 LPR 方法

从图 3.4，3.5不难得到在前期不论 N-WR、LPR方法都有较大的误差，这主
要是窗宽参数的选择导致的。但不论如何调整，LPR 方法的偏差都要比 N-WR
要小，事实上，模拟股价过程的任意 5条轨道，给出 N-WR、LPR方法的均方误
差 (MSE) 如下表 (窗宽都取经验窗宽, 故同方法横向对比的 MSE 差距较大，这
里只做纵向对比)：

表 3.1 五条轨道下 σ 的均方误差

非参估计方法 轨道一 轨道二 轨道三 轨道四 轨道五
NW-R MSE 0.0509 0.1702 0.0321 0.0382 0.0231
LPR MSE 0.0093 0.119 0.0092 0.0073 0.0049

同样的，取经验窗宽 h = 1.25，分别使用 N-WR 方法与 LPR 方法估计
Z(· ) 得到的结果如图 3.6,3.7 所示：

图 3.6 条件期望 N-WR 方法 图 3.7 线性回归 LPR 方法
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在表 3.1 中 5 条轨道对应的 Ys 轨道上，两种方法对应的均方误差如下表所

示： 以及绝对偏差率 (Mean Absolute Deviation, 以下简称 MAD)：

表 3.2 五条轨道下 Z 的均方误差

非参估计方法 轨道一 轨道二 轨道三 轨道四 轨道五
NW-R MSE 1.8823 0.6578 1.2255 0.247 1.1899
LPR MSE 1.3485 0.9529 1.2108 1.0015 5.1638

表 3.3 五条轨道下 Z 的绝对偏差率

非参估计方法 轨道一 轨道二 轨道三 轨道四 轨道五
NW-R MAD 16.03% 8.57% 28.14% 3.58% 10.79%
LPR MAD 13.45% 9.04% 27.91% 7.1% 28.07%

虽然表 3.2与表 3.3所示 NW-R方法在三条轨道上胜过了 LPR，但 LPR方
法的准确率对窗宽的选取依赖性较大，故而在最优窗宽下 LPR 仍旧胜过 NW-R
方法 (这一点会在 3.3 节继续讨论)。

3.1.2 µ(· ), g(· ) 的参数估计

针对轨道一，使用 N-WR 方法与 LPR 方法估计 µ(· ) 的结果如图：

图 3.8 条件期望 N-WR 方法 图 3.9 线性回归 LPR 方法

由此可以看出这两种方法在估计轨道一时的误差都比较大，换用 Jiang-
Knight 方法将大大提高准确率，其在其中两条轨道的数据结果如图：
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图 3.10 Jiang-Knight 方法：轨
道一

图 3.11 Jiang-Knight 方法：轨
道四

在五条轨道上对 µ(· ) 进行估计，得到的结果 (MSE、绝对偏差率) 如表
3.4,3.5 所示：

表 3.4 五条轨道下 µ 的均方误差

非参估计方法 轨道一 轨道二 轨道三 轨道四 轨道五
NW-R MSE 0.2984 0.1999 0.0121 0.106 0.2199
LPR MSE 0.2755 0.1854 0.0117 0.1211 0.2166

Jiang-Knight MSE 0.1957 0.1836 0.0701 0.1476 0.1501

表 3.5 五条轨道下 µ 的绝对偏差率

非参估计方法 轨道一 轨道二 轨道三 轨道四 轨道五
NW-R MAD 12.39% 10.167% 40.68% 14.13% 22.47%
LPR MAD 12.213% 34.96% 45.5% 13.27% 27.69%

Jiang-Knight MAD 9.59% 9.633% 9.59% 9.94% 9.75%

由表 3.4，3.5 可以看出，Jiang-Knight 方法相比另两种方法更加准确, 且即
使只使用同一个经验窗宽参数其估计效果都非常稳定。

同样的，在轨道一上对使用 N-WR 方法与 LPR 方法对 g(· ) 进行估计得

到的结果如图所示：
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图 3.12 条件期望 N-WR 方法 图 3.13 线性回归 LPR 方法

因为在经验窗宽下对 g(· )的估计误差非常大，因此在所给的五条轨道上先

对窗宽参数进行优化，得到最优窗宽约为 (精确到小数点后一位)：

表 3.6 五条轨道下 N-WR 与 LPR 的最优窗宽

非参估计方法 轨道一 轨道二 轨道三 轨道四 轨道五
NW-R 6.67 3.4 5.2 3.1 2.8
LPR 14.3 18.3 5.6 35.6 25.6

在五条轨道上对 g(· )进行估计，在各自的最优窗宽下，得到的结果 (MSE、
MAD) 如表 3.7 所示：

表 3.7 五条轨道下 µ 的均方误差

非参估计方法 轨道一 轨道二 轨道三 轨道四 轨道五
NW-R MSE 0.449 0.8736 0.7299 0.8643 0.9741
LPR MSE 0.4079 0.4146 0.0548 0.0314 0.105

NW-R MAD 20.4% 21.93% 35.01% 33.64% 29.7%
LPR MAD 18.04% 17.86% 9.49% 4.09% 8.14%

在本节的例子中，由于股价过程服从几何布朗运动，因此 g 的构成非常特
殊——恰好是 Ys, Zs 的线性函数，因此可以使用 g 的特殊构造下的估计方法. 已
知：

g = β0Ys + β1Zs (3.17)

且已知 β0, β1 的真实值为:β0 = −r = −0.122;β1 = −(b− r)σ−1 = 0.3356,
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假设前 50 个数据 (前 0.05 个时间单位) 进行估计时，时间跨度足够小，在
该种情况下，得到的估计结果如下：

g(· ) = −0.130522Ys + 0.338685Zs

Zs = 1.9667 +
√
−1.7738 + 1.4686Ys

(3.18)

使用 3.18 式计算一系列新的 Ŷs, Ẑs, 最后得到的结果如表 3.8 所示：

表 3.8 调整后全时段 β0,β1 估计效果

参数 取值 绝对偏差率 Std. Error t 统计量
β0 -0.156996 28.69% 0.005663 -27.72461
β1 0.203071 39.48% 0.007268 27.94192

3.2 误差与置信区间

在参考文献五中，Chen and Lin 给出了各估计量置信度为 1 − α 的置信区

间的算法, 其描述如下：

µ̂ (s, x0)± u1−α/2Ŝb(s,x0)

σ̂2 (s, x0)± u1−α/2Ŝσ2 (s, x0)

ĝ (s, x0)± u1−α/2Ŝg(s,x0)

Ẑ2 (s, x0)± u1−α/2ŜZ2 (s, x0)

(3.19)

其中 u1−α/2 是标准正态分布函数双侧分位数。而 Ŝ 是对应样本的样本数据

标准差。

以轨道一上的 Z2(· ) 为例，其置信度为 95%(α = 0.05) 的置信区间以及估
计值如图 3.14，3.15 所示：

图 3.14 N-WR 方法 图 3.15 LPR 方法
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3.3 核函数选择与窗宽参数优化

以轨道一上对 Z(· ) 的估计为例，在不同的窗宽 (取步长 0.01) 下，其均方
误差随窗宽的变化值如图 3.15，3.16 所示：

图 3.16 N-WR 方法 图 3.17 LPR 方法

在其余 4 条轨道上优化窗宽参数，得到最优窗宽如表 3.9 所示：

表 3.9 四条轨道下 N-WR 与 LPR 的最优窗宽

非参估计方法 轨道二 轨道三 轨道四 轨道五
NW-R 2 1.01 1.48 2.43
LPR 33.32 6.1 12.45 1.71

再比对 N-WR 方法与 LPR 方法，得到的结果 (MSE、MAD) 如表 3.10 所
示：，

表 3.10 四条轨道下 Z2 的均方误差

非参估计方法 轨道二 轨道三 轨道四 轨道五
NW-R MSE 0.6186 0.679 0.2466 0.8754
LPR MSE 0.6554 0.4694 0.3231 2.5771

NW-R MAD 8.33% 17.3% 3.58% 12.32%
LPR MAD 8.13% 14.38% 5.41% 19.89%

使用同样的窗宽优化方式，对几个常用的核函数效果进行对比。列出三种有

代表性的常用核函数为：
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Gaussian 核: K(x) =
1√
2π

e−
x2

2

Epanechnikov 核： K(x) =
3

4

(
1− x2

)
χ|x|≤1(x)

Cosine 核: K(x) =
π

4
cos
(π
2
x
)
χ|x|≤1(x)

(3.20)

其中 χA(x) 是示性函数：

χA(x) =


1, x ∈ A

0, x /∈ A

(3.21)

其余的常见核函数结构与 3.20 所示大同小异，其校准与结果可详见参考文
献 [3]。使用 LPR 方法估计 Z，在不同核函数最优窗宽下的 MSE 如表 3.11 所
示：

表 3.11 不同核函数下的 MSE

核函数 最优窗宽 (h) MSE
Gussian 2.39 1.3125

Epanechnikov 4.74 1.2674
Cosine 4.86 1.2671

Epanechnikov、Cosine 估计效果如图 3.19、3.20 所示：

图 3.18 Epanechnikov 核 图 3.19 Cosine 核
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第四章 实证分析

由第三章的数值实验结果大致可以得到：估计 Zs�σ(· )�g(· ) 的时候 LPR
方法整体表现比 N-WR 方法要好；在估计 µ(· ) 时，Jiang-Knight 方法的稳定
性与精度都颇高。本章在第三章的基础上进一步将效果较好的方法应用于实际

的期权定价中，验证非参估计方法的实际意义。与第三章不同的是，本章中只

有实际的标的资产价格与其对应的期权价格的实际数据样本，而不知待估参数

的实际函数结构，因此在计算期权价格时 Black-schloes 方程完全失效，故而在
得到参数的估计值之后需要全新的计算 BSDE 的数值算法。参考文献 [7]、[20]
描述了使用条件期望、Guass-Hermitte 插值近似的 BDSE 算法；文献 [9] 中描
述了使用 PDE 的数值方法来逼近 BSDE 的数值方法。

4.1 FBSDEs 的数值算法
为了简便，这里选用 PDE 的数值方法来逼近 BSDE 的数值，其叙述如下：

已知部分耦合的 FBSDEs，Xs 为标的资产过程，Ys 为与之对应的欧式看涨期权

价格： 

dXs = µ (s,Xs) ds+ σ (s,Xs) dWs

−dYs = g(s,Xs, Ys, Zs)ds− ZsdWs

X(t) = x

Y (T ) = (XT −K)+, ∀s ∈ [t, T ]

(4.1)

由非线性 Feymann-Kac 定理，(4.1) 式的解 (Xs, Ys, Zs) 由如下偏微分方程

给出：
∂

∂s
u(s, x) + µ(s, x)

∂

∂x
u(s, x) +

1

2
σ2(s, x)

∂2

∂x2
u(s, x) + g(s, x, u, v) = 0

v(s, x) = σ(s, x)
∂

∂x
u(s, x), u(T, x) = (x−K)+

(4.2)

以及：

u (s,Xs) = Ys, v (s,Xs) = Zs (4.3)

想要数值求解 (4.2) 式给出的柯西问题，还需要对及边界条件做出设定，事
实上欧式期权下的边值条件可以设定为： u(t, 0) = 0

u(s,M) = M −K, M 足够大
(4.4)
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(4.4) 式比较直观的解释为：当标的资产价格恒为 0 时，看涨期权价格为 0
或者不行使权力。当标的资产价格在时间段内一直保持足够大，期权价格的变化

为 0。
本节使用 Crank-Nicolson 方法求解 (4.2) 式与 (4.4) 式构成的偏微分方程,

其描述如下

设有等距的时间划分与空间划分：

t = s1 < s2 < · · · < sn = T si+1 − si = τ, ∀i ∈ (1, 2, . . . , n− 1)

0 = x1 < x2 < · · · < xN = M xj+1 − xj = h, ∀j ∈ (1, 2, . . . , N − 1)

对 (4.2) 式在时间网格与空间网格上做离散化处理，得到：

−
ui+1
j − ui

j

τ
=
1

2

(
µi
j

ui+1
j+1 − ui+1

j

h
+

1

2
(σi

j)
2
ui+1
j+1 − 2ui+1

j + ui+1
j−1

h2
+ gij

)

+
1

2

(
µi+1
j

ui
j+1 − ui

j

h
+

1

2
(σi+1

j )2
ui
j+1 − 2ui

j + ui
j−1

h2
+ gi+1

j

) (4.5)

其中，ui
j = u(si, xj)

整理 (4.5) 式得到：

−

[
µi+1
j

τ

h
+

(σi+1
j )2

2

τ

h2

]
ui
j+1 −

(σi+1
j )2

2

τ

h2
ui
j−1 +

[
2 + µi+1

j

τ

h
+ (σi+1

j )2
τ

h2

]
ui
j − τgi+1

j

=

[
µi
j

τ

h
+

(σi
j)

2

2

τ

h2

]
ui+1
j+1 +

(σi
j)

2

2

τ

h2
ui+1
j−1 +

[
2− µi

j

τ

h
− (σi

j)
2 τ

h2

]
ui+1
j + τgij

(4.6)
(4.6)式中的参数 µ(s, x), σ(s, x)可以通过多次模拟 Xs 的轨道并进行对应的

参数估计，当数据收集得足够多，可以在每一个时间格点 si, 由 µ(si, x) 对 x 进
行分段线性插值得到，即 s = si 时，有：

µ(si, x) = I(x), x ∈ [0,M ] (4.7)

其中 I(x) 是分段线性插值函数。而对于 g 的估计却比较难得到，因为 Xs

与 Ys 之间的关系正是所需求解的问题，因此无法模拟对应得多条 Ys 的轨道。在

本节中，仍假设 g 是 Ys, Zs 的线性函数，即 g = β0Ys + β1Zs, 这时只要知道 Ys

的一条轨道便可估计出参数 β1�β2，进而得到 (4.5)式、(4.6)式中 gij, g
i+1
j 的表达

式：

gij = β0u
i
j + β1

ui+1
j+1 − ui+1

j

h

gi+1
j = β0u

i+1
j + β1

ui
j+1 − ui

j

h

(4.8)
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将 (4.8) 式代入 (4.6) 式得到：

−

[
(µi+1

j + β1)
τ

h
+

(σi+1
j )2

2

τ

h2

]
ui
j+1 −

(σi+1
j )2

2

τ

h2
ui
j−1 +

[
2− τβ0 + (µi+1

j + β1)
τ

h
+ (σi+1

j )2
τ

h2

]
ui
j

=

[
(µi

j + β1)
τ

h
+

(σi
j)

2

2

τ

h2

]
ui+1
j+1 +

(σi
j)

2

2

τ

h2
ui+1
j−1 +

[
2 + τβ0 − (µi

j + β1)
τ

h
− (σi

j)
2 τ

h2

]
ui+1
j

(4.9)
令 τ/h = q1, τ/h

2 = q2。当取定时间 s = si 将 (4.9) 式使用稀疏矩阵表达，
得到：

Ai



ui
1

ui
2

ui
3

...

ui
N


= Bi



ui+1
1

ui+1
2

ui+1
3

...

ui+1
N


(4.10)

其中，

Ai =



a1 b1 c1

a2 b2 c2

. . . . . . . . .

aN bN cN


, Bi =



d1 e1 f1

d2 e2 f2

. . . . . . . . .

dN eN fN


(4.11)

以及：

aj = −q1(µ
i+1
j + β1)−

q2
(
σi+1
j

)2
2

, bj = 2− τβ0 + q1(µ
i+1
j + β1) + q2

(
σi+1
j

)2
, cj = −

q2
(
σi+1
j

)2
2

dj = q1(µ
i
j + β1) +

q2
(
σi
j

)2
2

, ej = 2 + τβ0 − q1(µ
i
j + β1)− q2

(
σi
j

)2
, fj =

q2
(
σi
j

)2
2

求解线性方程组 (4.10) 即可得到偏微分方程 (4.2) 的解。
针对第三章的蝶式期权，使用本节的数值算法的结果如图所示：
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图 4.1 FBDSEs 数值算法求解蝶式期权

4.2 50ETF 购 6 月 1400 期权估计
本节利用非参数方法对实际数据进行估计与模拟。所用到的是 50ETF 购 6

月 1400 期权 (数据来源：CSMAR 数据库（China Stock Market and Accounting
Research Database), 该期权是 6 个月后行权的欧式看涨期权，类型为个股期权，
交易 ID 为 209000000191，起止日期为 2014-1-14 到 2014-6-25，共有 104 个交
易日的当天期权收盘价格与其对应的标的资产收盘价格，令 1 个交易日 =0.001
个时间单位，利用 LPR 方法得到 σ(· )�Z(· )�g(· ) 的估计, 使用 Jiang-Knight
方法估计 µ(· )。得到 Xs、Ys 的估计曲线如图所示：

图 4.2 标的资产价格 图 4.3 期权价格
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第五章 总结

本文对现如今比较核心的 FBSDEs 的非参数估计方法作出了介绍整理、并
给出了其对应的数值实验与实际应用。总的来说，对于四个待估参数 LPR 方法
的整体表现都要好过 NW-R。在估计 µ(· ) 时，最优方法是 Jiang-Knight 方法，
其不论稳定性还是精确度都是最好的；若是知道 g 的构成，首选插入终端条件
的参数估计方法。最后从实证分析的结果看，这些方法大致能够完整的模拟出标

的资产与期权的价格路径，但从文章架构与数值实验结果方面来看，本文还存在

如下几点缺陷：

1)N-WR 方法、LPR 方法的稳定性不够，其对窗宽参数的选取与轨道的依
赖性比较大。尤其在不同的 SDE 路径轨道下，其估计效果有比较大的差距。

2) 对 g 的特殊结构的讨论只限于 Y、Z 的线性结构，这一点并不完全符合
实际应用领域的要求，进一步可以讨论它是 Y、Z、X，s 的线性结构或者其它更
复杂构成下的估计方法。

3) 本文的 FBSDEs 是完全由布朗运动驱动的，这并不完全符合实际应用领
域的某些条件，现如今学术界更关注的是带跳的一类仿射-扩散模型、Levy 过程
驱动的 FBSDEs 等模型，这些模型相比本文的模型要更加完备、准确。这类带
跳的 FBSDEs 模型介绍以及其参数估计方法可见参考文献 [1].

4) 本文只关注了部分耦合的 FBSDEs，并未提出完全耦合的 FBSDEs 的非
参估计方法，这一类模型更加复杂，亟须进一步的讨论、研究。

5) 本文只介绍了应用比较广泛的非参估计方法，更多的半参数、非参数估
计方法可见参考文献 [1]、[13].
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附录

定理一的证明：设辅助函数 q(x) 满足：∀x ≤ 0, q(x) = 0 且存在非负常数 a
使得 a < ∀x, q′(x) = 0, q(a) = q′(a) = 0, 则由 Itô 公式得到：

dq(Xs) = [q′(Xs)µ(s,Xs) +
1

2
q′′(Xs)σ

2(s,Xs)]ds+ q′(Xs)σ(s,Xs)dWs (0.1)

对 5.1 式从 t 到 s 做伊藤积分得到：

q(Xs)− q(Xt) =

∫ s

t

[q′(Xη)µ(η,Xη) +
1

2
q′′(Xη)σ

2(η,Xη)]dη +

∫ s

t

q′(Xη)σ(η,Xη)dWη

(0.2)
对 4.2 式左端求条件期望 E[Xs = y | Xt = x] 得到：

E[q(Xs)− q(Xt) | Xt] =

∫ a

0

q(y)p(t, s, x, y)dy − q(x)

=

∫ s

t

∫ a

0

q′(y)µ(η, y)pp(t, η, x, y)dydη

+

∫ s

t

∫ a

0

1

2
q′′(y)σ2(η, y)pp(t, η, x, y)dydη

(0.3)

对 5.3 式右端对 y 进行分部积分得到：∫ a

0

q(y)p(t, s, x, y)dy − q(x) =

∫ s

t

q(y)µ(η, y)p(t, s, x, y) |a0 dη

−
∫ s

t

∫ a

0

q(y)
∂

∂y
[µ(η, y)p(t, η, x, y)]dydη

+

∫ s

t

∫ a

0

1

2
q(y)

∂2

∂y2
[σ2(η, y)p(t, η, x, y)]dydη

= −
∫ s

t

∫ a

0

q(y)
∂

∂y
[µ(η, y)p(t, η, x, y)]dydη

+

∫ s

t

∫ a

0

1

2
q(y)

∂2

∂y2
[σ2(η, y)p(t, η, x, y)]dydη

(0.4)

5.4 式两端对 s 求导数得到：∫ a

0

q(y)
∂

∂s
p(t, s, x, y)dy = −

∫ a

0

q′(y)
∂

∂y
[µ(s, y)p(t, s, x, y)]dy

+

∫ a

0

1

2
q′′(y)

∂2

∂y2
[σ2(s, y)p(t, s, x, y)]dy

(0.5)

即：∫ a

0

q(y)

{
∂

∂s
p(t, s, x, y) +

∂

∂y
[µ(s, y)p(t, s, x, y)]− 1

2

∂2

∂y2
[σ2(s, y)p(t, s, x, y)]

}
dy = 0

(0.6)
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事实上，不存在常数 c,d 满足：0 < c < d 使得：

∂

∂s
p(t, s, x, y) +

∂

∂y
[µ(s, y)p(t, s, x, y)]− 1

2

∂2

∂y2
[σ2(s, y)p(t, s, x, y)] > 0, y ∈ (c, d)

(0.7)
因为，若存在这样的区间，由 a 的任意性，分别令 a=c;a=d 得到：∫ d

c

q(y)

{
∂

∂s
p(t, s, x, y) +

∂

∂y
[µ(s, y)p(t, s, x, y)]− 1

2

∂2

∂y2
[σ2(s, y)p(t, s, x, y)]

}
dy = 0

(0.8)
因为 q(x) 的形式是任意的, 假设其在 (0,a) 上恒小于 0，则由积分中值定理，

存在 δ ∈ (c, d) 有：

5.8 式 = q(δ)

{
∂

∂s
p(t, s, x, δ) +

∂

∂y
[µ(s, δ)p(t, s, x, δ)]− 1

2

∂2

∂y2
[σ2(s, δ)p(t, s, x, δ)]

}
= 0

(0.9)
这与假设矛盾。

同理，不存在 c,d 使得：
∂

∂s
p(t, s, x, y) +

∂

∂y
[µ(s, y)p(t, s, x, y)]− 1

2

∂2

∂y2
[σ2(s, y)p(t, s, x, y)] < 0, y ∈ [c, d]

(0.10)
即成立转移密度函数满足 Fokker-Plank 方程。 □
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