Complex Network Of Interbank Market

And Its Application In Neural Network

G14PJA = MATH4041
Mathematics 3rd Year Project

Autumn 2021 /22

School of Mathematical Sciences

University of Nottingham

Zhiyuan Lei

Supervisor: Dr. Reuben Odea

Assessment type: Investigation

| have read and understood the School and University guidelines on plagiarism. | confirm that

this work is my own, apart from the acknowledged references.



Abstract

The Interbank market is an essential part of the modern financial system. Complex interbank
networks are formed by inter-bank lending, payment and settlement, discount and guarantee.
On the one hand, banks' networks do provide channels for interbank exchanges. However,
the exchange of the interbank liquidity assets also make banks in danger, the inter-bank
lending behaviour become potential paths for risk contagion when defaults occur, and those
defaults may cause a domino effect. Terefore, it is necessary to analyze the structure of the
interbank network and mechanism of risk contagion. Consequently, | will concentrates on
the characteristics of the structure of interbank network, the mechanism of interbank risk
contagion and how to do the risk prediction in this report

Firstly, | build a dynamic network model for interbank market, which is based on the
interbank-lending behaviors of the bank descirbed with balance sheet. Then, | analyze the
features of interbank market networks. Simulation results indicate that the interbank network
is a small-world network and has currency center structure in most of countries.

Secondly, | build the stochastic SIR model on interbank market networks to simulate risk
contagion, and analyze the how characteristics of network influence the scale of banks which
is exposed to risk. The simulation results show that exposure of bank assets increase when
the lines of network increase or the average shortest path decrease.

Thirdly, | use graph neural networks (GNNs) to predict the label of banks in a specific graph
based on the results of Monte-Carlo method. And then analyze how the structure of graphs
influence the accuracy of prediction. Simulation results show that the accuracy of prediction is
acceptable and accuracy increases when the lines of network increase or the average shortest

path decrease.
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1 Introduction

Inter-bank behavior forms complex relationships among banks through market transactions,
payment and guarantees. On the one hand, Inter-bank lending among banks can spread risks
and provide efficient cash flow. On the other hand, it also provides the way for risk exposure
among banks. When one bank faces with the finacial crisis, it may not be able to pay creditor's
debt and cause creditor banks to also face more difficulties, and its dominoes effect will cause
collapse of interbank network.

Therefore, studying the network structure characteristics of the bank market is helpful for
administrator to correctly understand the risk contagion path and propose relevant policies.
Besides, studying the risk contagion mechanism of the bank market and designing effective
risk contagion control strategies can help the managers of commercial banks. In addition, quik
method predictng the risk of banks should be found to save time though the accuracy of this

method is less than Monte-Carlo method.

1.1 Background
1.1.1 Current Reasearch On Interbank Network

Current reasearch on interbank network can be divided into two categories. One is the mech-
anism of constructing network based on Watts-Strogats graph. The other one is the char-
acteristics analysis of exist networks. So far, scholars have conducted empirical research on
the network structure of the interbank market in Japan, Austria, ltaly, Brazil, Germany, the
United Kingdom, the United States, Hungary, Belgium, Switzerland, Finland, Russia, Mexico,
the Netherlands and other countries.

Firstly, Watts and Strogatts (1998) propse Watts-Srogats network and analyse its main
characteristcs. Empirical research on the network structure of the interbank market finds that it
has small-world and scale-free characteristics as Watts-Srogats network. Boss (2004) found out
that the network degree of Austrian interbank market obeys a double power-law distribution,
and the network has small-world characteristics. Kanno (2015) conducted an analysis of the

Japanese interbank market and found that the network structure of the Japanese interbank



market has small-world and scale-free characteristics. When Soramaki (2007) studied the
interbank debt linkages in the Federal Reserve's electronic transfer payment system (fedwire),
they found that the interbank market network in the United States has the characteristics of a
small world network. Becher et al. (2008) found that the number of banks in the UK is far less
than that in the US, but the average path length of the interbank capital network is similar to
that of the US interbank network, and the UK interbank network is also a small-world network.

Secondly, interbank market network also has currency central structure. Lubloy (2005)
analyzed the structure of the interbank market based on the transaction data of the interbank
market composed of 39 banks in Hungary in 2003, and found that there are multiple currency
center structures in the Hungarian interbank market. Most of banks in are connected to
the several big banks. Similarly, there are multiple currency center structures in the Belgian
interbank market (Degryse and Nguyen, 2004). The four major banks account for 85% of the
total assets of all banks, and 35% of the interbank market transactions occur among these
four major banks. And 90% of the inter-bank market transactions are related to the big 4
banks. Craig and Peter (2014) found that there is a currency center structure in the German
interbank market.

In addition, the interbank market network has dynamically evolving. lori et al. (2008)
conducted a study on the ltalian interbank market and found that the structure of the Italian
interbank market was evolving year by year from 1999 to 2002, and the network structure of
the Italian interbank market was a random network. Martiliez-Jaramill et al. (2010) studied
the Mexican inter-bank capital network and found that most of the inter-bank debt links are

stable, while a few, local links will change.

1.1.2 Risk Infection Mosel

The existing research on the relationship between the network structure of the bank market
and risk contagion is mainly divided into two categories: one is the analysis and comparison
of network stability between different network structures (such as small-world network, scale-
free network and random network, etc.). The other one is to analyze the relationship between

network topology characteristics and network stability on the network with the same structure.



Firstly, based on the classic epidemic model such as Sl, SIS and SIR model, scholars built
their ODE form on social network. Stefano (2016) built a new stochatic infection model on
social network, and found out that the stochatic infection rate will converge to its ODE form.
Based on the epidemic model, Scholars found that the inter-bank lending relationship provides
a potential path for inter-bank market risk contagion (Gai and Kapadia. 2010. (Krause and
Giansante, 2012). Ladley (2013) revealed that the conditions for inter-bank lending to spread
risks provide ways for risk contagion.

Based on network theory, Aleksiejuk and Holyst (2001) analyzed the contagion and scale
of bank default when a single bank failed on the bank network. Moreover, Nier et al. (2007)
studied the systemic risk caused by default in the interbank market based on random network;.
Thumer et al. (2003) firstly applied SI model on reasearcing the contagion and scale of the
bank default.

Allen and Gale (2000) studied the risk contagion problem in the interbank market based
on different assumptions about the structure of the interbank market. The results of the
Allen-Gale model show that the risk contagion among banks is an equilibrium phenomenon.
When the inter-bank market is a complete market structure, the system can achieve optimal
risk sharing, under an incomplete market structure, the system can also achieve optimal risk
sharing, but the market structure is more fragile. However, Cassar et al. (2001) assumed
that the network structure of the interbank market is a local network and a global network,
respectively. The study found that when the interbank market network is locally connected,
the speed of bank risk contagion is relatively low, when the inter-bank market is globally
connected, the speed of bank risk propagation is relatively high.

The network characteristics (such as network centralization, network connectivity, average
shortest path length and network clustering coefficient, etc.) will also influence the scale
of bank default. Krause and Giansante (2012) simulated interbank networks with different
scaling parameters, and their research believed that the smaller the interbank network scale,
the higher the concentration, the less likely the default contagion would occur. Battiston
(2012) analyzed the impact of network density on bank failure in individual banks and in

interbank market networks. Tabak et al. (2014) proved that the clustering coefficient can be



used as a measure of systemic risk, and that the clustering coefficient is negatively related to

interest rates.

1.1.3 Classic Prediction Method: Monte Carlo And Neural Network

When analyze a specific graph structure make some banks more likily to expose to risk, Monte-
Carlo method must be a effective method because frequency can represents probablity well
when we run the model for many times. However, Monte-Carlo always wastes lots of time
when network is large. Therefore, it is naturally to consider use neural network to do the
prediction if the accuracy is acceptable. Bryan et al. (2014) gives a method to transfer the
information of graph to data embedding vector named DeepWalk based on the language model
Word2Vec (Kyunghyun et al., 2014). Jizhe Wang in Alibaba (2018) gives another method
for graph embedding named EGES, their results shows that this method is more accurate and
runs more swift than DeepWalk. Thomas and Max (2017) built graph convolutional networks
(GCNs) for classification and shows that GCNs work well on Zacharys karate club network

calssification.

1.2 Structure Of The Report

The current research have a lot of great results on interbank network and risk model. However,
there are still some further works to do, which are shown as follows:

1)Most of the inter-bank market network structure constructed by the existing simulation
models is static, and most of them simply assume that the inter-bank market network is a
specific structure, such as random network, scale-free network, and so on. However, the actual
inter-bank market network is very complex, and the inter-bank relationship depends on the
inter-bank lending behavior of banks, and the behavior of banks is constantly changing with
time. Therefore, the actual network structure of the inter-bank market should also renew
dynamically.

2)Most of risk infection model applied on network is their ODE form. Few of them applied
stochastic model on inter-bank network. However, the stochastic model performs better when

describes single bank’s infection rate.



3)Few of current model research how the graph neural network works on inter-bank net-
work, but it is a effective and efficient way todo the prediction and we will not train a new

model in the future when analyse a new graph structure.

1.2.1 Content Of Report

In this paper, | will do some further work of interbank network and risk model, the main part
of my work is shown as follows

(1) Construction of dynamic interbank market network:

| build a dynamic bank balance sheet, and then build a dynamic interbank market network
based on the dynamic bank balance sheet especially inter-bank lending. Apply the model to
simulate interbank network in many countries, and analyze the characteristics of inter-bank
market network structure.

(2) Construction of stochastic rate model on interbank network:

Based on the interbank market network, | build the stochastic SIR model on networks.
Apply the model to simulate its results in many different graphs, and analyze how the charac-
teristics of graph influence the scale of banks easily exposed to risk.

(3) Prediction of banks which is in danger on a specific graph structure:

| use Monte-Carlo method to train many graphs to label the banks on a specific graph.
They are labeled with 3 categories: Easily get infected, recovered and susceptible. Then | treat
the results as the sample of graph neural network, and train the sample to get the prediction
model. At last, | analyze how the characteristics of inter-bank market network influence the

accuracy of prediction.

1.2.2 Structure Of Dissertation

In section 1, | introduce the backgroud and current research of interbank network and risk
model, and analyze the further work of current research. Then introduce the content of the
report.

In section 2, | introduce some basic knowledge of graph including the characteristics of a

graph such as average clustering coefficient, averag shortest path and centrality e.t.c. Then |



introduce some essential network such as ER graph and Watts-Strogatts graph, and analyze
their characteristics.

In section 3, | build dynamic interbank network in many countries based on dynamic bank
balance sheet. Then | built stochastic SIR model on interbank market network.

In section 4, | use Monte-Carlo method to label the banks in many graphs. Then | use those
banks’ label to train a specific graph neural network for prediction. In addition, | introduce
the graph embedding method in this section.

In section 5, | summarize the conclusion of all section and give some shortcomings and

further work of this report.



2 Basic knowledge of Interbank market network

2.1 Complex network
2.1.1 Directed and Undirected Graphs

Since Complex Networks are special Graphs, graph theory can be used in decribe interbank
market network (Wasserman and Faust, 1994. Scott, 2012. Cormen, 2001). Basically, a graph
G = (V, E) is a mathematical structure consisting of a nodes set V' = {vy,vq, -+ ,un} and
an edges set £ = {ey, €9, -+ ,ex}. The number of nodes N = | V | and the number of edges
K= | E | are called the order and size of the graph G, respectively.

A graph is called undirected graph if there is no ordering in the vertices defining an edge.
A graph G for which each edge in E has an ordering to its nodes is called a directed graph.
Obviously, in undirected graph e;; = ej;, (i # j), but in directed graph e;; # ej;, (i # j).

Additionally, If edge E has weight, then the graph is also called weighted graph.

-1.5 -1 05 0 0.5 1 15 1 15 2 25 3

(a) Undirected Graph (b) directed Graph

15

w13
1

\J
W R
0.5

0 ® 2
5

-05

(c) Weighted Graph

Figure 1: Directed and Undirected Graphs in one example, N =7, K =10



Figure 1 shows a graph G with N = |V| = 7 nodes and K = |F| = 10 edges, where
Figure 1(a) is undirected graph because there is no ordering in the vertices defining an edge,
and 1(b) is directed graph, you can see an edge always comes from a node and points to
another node (i.e. from node 1 to 2). 1(c) is weighted graph with edge weight W;; between
node v;, v;.

As for all the graph G, it always holds that 0 < K < N(N — 1)/2. When each node in G
has connection with all other nodes, the number of edges come from this node is ()

A graph G is called sparse graph if K << N?2. And graph G is called dense graph when
K = O(N?). If K = N(N —1)/2, graph G is a complete graph. Actually, the interbank
market network is formed as dense graph, this will be introduces in section 2.3.2 and section
3.2.3.

Generally, graph G can be represented by its adjacency matrix A = (a;;) 5, - For example,

matrix A, is adjacency matrix of Figure 1(a) and 1(c), matrix A, is adjacency matrix of Figure

1(b).

0110000 0110000
1011000 0011000
1100100 0000100
As={0100111]|,%=]0000T1T1T1]/,
0011010 0000O0T1O0
0001101 000O0O0TO01
0001010 0000000

where a;; = 1 means node v;, v; is connected while a;; = 0 means node v;, v; is not connected.

2.1.2 Degree and its distribution

In undirected graph G, the degree of node v; is the number of links that are connected to v;,

thus it can be defined as

k?i = Qg 2.1
: J
J

where adjacency matrix A = (a;;) . -



In directed graph, The indegree is number of edges going into node v; and the outdegree

is the number of edges going out of v;. In-degree is defined as

n
k"= aj,
i

and out-degree is
out __
B =3 ay,
J

and the degree of v; is k; = k" + kout

Now we define the moment of degree as follow

(k™) =>_k"P(k). (2.2)

When n = 1, equation (2.2) is the average degree of graph G.

In graph G, P (k' | k) is the probablity that a node with degree k points to a node with
degree k’. Obviously, >, P (k' | k) = 1, and it also satisfies (Boguna and Pastor-Satorras,
2002)

kP (K| k) P(k) = K'P (k| ') P (K), (2.3)

where P(k) is the probablity that a node has degree k.
In large graph, it is difficult to calculate P (k' | k). Generally, we calculate average degree

which are connected to v; instead, which is the eqution (2.4)

1 1 Y
k’nn,i = kf Z kj = ? Zaijkj; (2-4)

i jEN; =1

where N; is the set of node v;'s neighbor nodes.
In Random graphs, assume that the probablity that node v; and v; is connected is p. Then

the degree of node v; always follows the Bernoulli distribution, which is

P(ki=k)=Cy_p"(1—-p)" 17~ (2.5)

10



Define X, is the number of nodes whose degree is k, then

E(Xy) = NP (k= k) == A

When N is very large, X, follows Poisson distribution, so we have

P(X,=r)= e’\"“‘/:f'“. (2.6)
Meanwhile
E (Xk) = Var (Xk) = )\k,
(2.7)
P(k;=k)=Cyx_p" 1 —pN '~
When N — 400
k k
P(ki=k)= e-pN(p‘]Z) = e—<’“><kk>,. (2.8)

We set N=100 and p=0.15, the density curve of degree is shown in Figure 2. As it shows, the

degree is basically remains in [5,30] in this example.

Figure 2: Density function: N=100, p=0.15

Now we get the distribution of degree. This is the fundation of building both random

graph and Watts-Strongats network which are introduced in section 2.3.
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2.2 Characteristics Of Graph

In this section, | will introduce some important characteristics of a graph. Those characteristics

will influence how we build the interbank market network and how the model works in graphs.

2.2.1 Local cluster coefficient

Local clustering coefficient is a measure of the degree to which nodes in a graph tend to cluster
together. Precisely, it is given by a proportion of the number of links between the vertices
within its neighbourhood divided by the number of links that could possibly exist between

them (Watts and Strogatz, 1998). As for node v;, its cluster coefficient ¢; is given by

261' Zj m QijAjmAmy
= — Zi , 2.9
T (k- 1) ki (ks — 1) (29)

where A = (a;;) v is the adjacency matrix.

Nx

And the network average clustering coefficient is given by

C=(c) = jlv e (2.10)

2.2.2 Network Density

Network density describes the portion of the potential connections in a network that are actual

connections, which is given by
|E]

D=———. 2.11
N(N —1) ( )

2.2.3 Shortest path
In a undirected graph, a subset Pa = v;, Vg, Uy, ..., v; in which v; is connected to vy, vy is
connected to v,, e.t.c, rewrite Pa as Pa = vq,vs,vs3,...,0,,n < N, then v, is connected

to vy for all 1 < k < n, then Pa is called a path with length n-1 from v; to v,. The
shortest path from v to u is path Pa = vy, vo,v3,...,v,,v = v1,u = v, that over all possible

n minimizes the sum

n—1
> Wiin
i=1

12



, where W; ;11 is weight between node v; and v;4;. It equals to 1 in undirected graph.

The average shortest path of a graph is defined as follow

1
L= YD S dy, (2.12)

6,JENi#£]
where d;; = d(v;, v;) is the shortest path between v; and v;
The diameter of a graph is the length of the shortest path between the most distanced
nodes.

Figure 3 shows a graph with 40 nodes in total. The shortest path from 6 to 36 is highlighted

by red line and one of the diameter (From 1 to 28) is highlighted by green line.

Figure 3: Example: Shortest path from 6 to 36 and Diameter

Shortest path is a very important characteristics in interbank market network because it
directly influence the length that the risk is spreaded from one bank to another. We will

discuss it further in section 4.1.

2.2.4 Centrality

The degree centrality of node v; is defined as

(2.13)

13



Graph centralization describes how tightly the nodes connect with each other. Freeman(1996)

defined the graph centralization as below

g St (ke = k)
CT NN —2)

(2.14)

where i* is the node with highest degree in graph g.
Closeness centrality of a node is the average length of the shortest path between the node

and all other nodes. It is defined as below

N -1

Cloy) = 2 d(vivvj)’

(2.15)

where d(v;, v;) is the distance between vertices v; and v;.
Betweenness centrality is the number of times the shortest path walk through a node

between two other nodes. It can be represented as

ndg (v)

ndst

CB(Z}) = Z

sF#vF£tEV

, (2.16)

where nd is total number of shortest paths from node s to node ¢ and nd(v is the number of
these paths that pass through node v.

Eigenvector centrality is a measure of how important a node is in graph g. Let A is
adjacency matrix of graph G, then the Eigenvector centrality vector X = (z1,z9,...,2y) is
given by

Ax = \x (2.17)

Equation (2.17) is the eigenvector equation of matrix A.

Those 4 centrality all describe some information of each node and how important it is in
the graph. However, none of them describe the whole information of the nodes. Is there any
method can record nodes information in a big matrix? The method solving this problem is
called Graph Embedding which will be introduced in section 4.2.1.

Figure 4 shows four different centrality of a same graph with 500 nodes. The nodes with

large centrality will be colored by dark color and they tend to be the 'bridges’ among the

14



connections. Thus, those nodes often are the currency center in interbank network and some
of them is more likely to be dangerous in finacial crisis because the risk tend to pass through

those 'bridges’ during the crisis. This will be discussed in section 4.1.

(a) Degree Centrality (b) Betweenness

(c) Clossness (d) Eigenvector

Figure 4: Examples of centrality of the same graph: N=200, p=0.4

2.3 Graph Model
2.3.1 Random Graph

Erdos and Renyi (1959) created a graph with N nodes and K edges model, which is called ER
Random Graph. There are two methods to creat a ER graph.

1)Randomly select a pair of nodes and connect them. Repeat the step over and over again
until the number of edges equals to K. This model is called Gﬁf}(.

2)The probablity of two nodes connected to each other is p. Then the probablity that the

graph has K edges is p (1 — p)¥N"D/2~K  This model is called G,

When N — oo, the average degree of G’ is (k) = 2K/N (see equation (2.2)) and the

average degree of Gi! is (k) = p(N —1). Newmann(2001) gives the formula that computes

15



average shortest path, which is given by

~ In(N/z1)

L=t Tt (2.18)

In ER model, z; = (k), zo = (k).
And the cluster coefficient of the graph is given by

) [02) — ()]’
o= 35 219

2.3.2 Watts-Strogats Network

Watts and Strogats bulit a new network which is similar to the ER model, but it always has

higher cluster coefficient. The basic algorithm of generating this network is shown below:

Given the N nodes, the mean degree K (assumed to be an even integer), and the proba-
blity of rewire p, where N > K > In N > 1. Then the model constructs an undirected
graph as follow

1)Construct a regular ring lattice, a graph with N nodes each connected to K neighbors

(K/2 on each side). There is an edge (4,7) if and only if

K K

2)For every node V; = 1,..., N take every edge connecting i to its /2 rightmost neigh-
bors, that is every edge (i,jmodN) with all j that ¢ < j <i+ K/2.
3)Rewire the nodes with probablity p, which means every edge (i,jmodN) is replaced by

(i,m) where m is chosen uniformly at random from all possible nodes and m # i.
Albert and Barabasi (2002) shows the structure of Watts-Strogats network with different

16



p, which is shown in Figure 5.

Regular Small-world Random

Increasing randomness

Figure 5: Example: Watts-Stongats network, Albert and Barabasi, 2002

If we draw the scatter figure of average cluster coefficient C(p) to see how it is influenced

by probablity p. The result is shown below

06

< Data
Approximation

05F

047F
203 ¢
Q

02

0.1 o)
o o

Q [s]
0 ‘

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
P

Figure 6: Example: Average cluster coefficient C(p) against p. N=200, K=5.

By equation(2.9) we have cluster coefficient of node i is given by ¢; = kiéfi_l) = Z”,;?kji]f;am ,

We use the expectation of ¢; and k;(k; —1) to represent average cluster coefficient C'(p; N, K).
It is obvious that expectation of k; is mean of degree: K. Since the node i is not rewired with
probablity 1 — p, and probablity that the two neighbor nodes of i before rewiring are still the

neighbor nodes after rewiring is (1 — p)?, the expectation of ¢; is given by

e; = My(1 —p)> + O(1/N), (2.20)

where M is the number of edges between K (mean of degree of node ¢) neighbor nodes. It

17



is given by My = 3K (K —2)/8.

Then C(p) can be approximated as C(p), which is given by

a Mo(1—p)®+O(1/N)

B K(K —1)/2
3K(K —2)/8 ,

=~ KE -1z P

_ i((f;j;u _ )+ O(1/N).

C(p)

(2.21)

The comparison between appoximation C’(p) and real Data see Figure 6.
As for regular network (p=0), equation(2.21), average cluster coefficient C(p) of W-S
graph is given by
C0)=————~ = i,K — 00. (2.22)

We draw the scatter figure of average shortest path of W-S network against p to get their

relationship, the result is shown below

]
L~ S ¢ S =

3 . . .
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

p

Figure 7: Example: Average shortest path L(p) against p. N=200, K=5.

Newman and Watts (1999), Barrat and Weigt (2000) introduce the average shortest path

L(p) can be approximated as fpllpws:

L(p) = —f(NKp), (2.23)

=l =

18



where f(z) can be approximated by

2 x
= ————=arctanh | ——. 2.24
f(x) $2+4xarc an Mx+4 (2.24)

Since

1.1
artanh v = iln tu

2.25
T (2.25)

then

1 J1+4/x4+1 ]
f(z) ~ In / ~ na:’ r>> 1. (2.26)
Va4 dx \/1+4/:c—1 T

By equation (2.21) and equation (2.24), we get

_ In(NKp)

L K2 NKp>>1. (2.27)
Thus when p = 0 and 1, the value of L(p) is
In N
L(0) ~ N/2K 1,L(1) = : 2.28
(0) ~ Nj2K >> 1, L(1) ~ 2 (228)

As algorithm of W-S network shows, each node is still connected to at least K/2 original

nodes, that is, the degree of each node is at least K/2. Thus we rewrite the degree as

K
Ci = S; -
2

Moreover, s; can be represented by

Si = 32(1) + 8,52),

where sgl) is the initial neighbor nodes of i that do not rewired, and the probablity of not
rewiring is 1 — p. And 552) is neighbor nodes of ¢ that rewired.

Then for nodes i whose degree is bigger than K/2, and st e [0, min(k — K/2, K/2)],

19



we have

K/2 (1) e
A ) = | S ot =
Si
and when N is very large
(pK/2)"
Py (s) o RS e PRS2, (2.30)

Consequently, we have

min(k—K/2,K/2) e (K /2)—n
P(k) = Z K2 (1—p)" K/2—n (pK/2) (K/2) 0P/
PRI e = (K2) — )

n=0 n

(2.31)

We set N=500, K=6, and draw the scatter figure of degree distribution with different
rewire probablity p and compare them with Poisson distribution with parameter K. The result

is shown in Figure 8

Figure 8: Example: Degree Distribution with different p, N=500, K=6

As shown in Figure 8, when p increases, the distribution of degree beocomes more close to
its expectation. This will influence the average cluster coefficient and average shoretest path
of the graph (see Figure 6 and 7). In next section, We will find out that interbank network

also has small-world characteristics as Watts-Strogats network shows.
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3 The Model Of Interbank Risk Market

The interbank market is an important part of the modern financial system. Inter-banks have
formed a complex relationship of creditor’s rights and debts through lending, payment and
settlement, discounting, acceptance, guarantee and other forms. Actually, it can be seen
that the network structure of the interbank market has many complex characteristics such
as small world, scale-free, hierarchical structure, currency center structure, cluster structure,
dynamic evolution and so on. On the basis of the existing research, this chapter constructs
a balance sheet-based interbank market network model, explains the formation mechanism of
the interbank market network dynamics, which is conducive to a deeper understanding of the
formation process of the interbank market, and also provides insights into the formation process
of the interbank market. It lays a foundation for analyzing the risk contagion mechanism of

the inter-bank market and designing risk control strategies.

3.1 Relationship Among Banks

Allen and Gale (2002) assume that the market network structure of banks has two forms. One
is complete market structure (as shown in Figure 9(a)) and the other one is incomplete market

structure (as shown in Figure 9(b))

)
cofSen
[BankD’w [BanlC”

(b) Incomplete

(a) Complete

Figure 9: Two forms of bank structure

Obviously, complete market is a special underected graph where any two nodes have a

bidirectional edge connection, while incomplete market is a directed graph in which there are
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only directed connections between banks.

Moreover, Freixas (2000) proposed currency center structure (as shown in Figure 10). |

this structure, there is a undirected connection between the currency center (Bank A) and

other banks, while there is no connection between other banks.

Bank
D

Figure 10: Currency center structure

In addition, the interbank market structure has complex network characteristics, such as
small-world characteristics, scale-free characteristics, hierarchical structure and currency center
structure characteristics, cluster structure. Basically, Watts-Strongats network works well in

simmulating the relationship among banks, one of the example is shown in Figure 11.

- 4 L .-I
.y o* .. N
o Rt 500 B
':-l:""- }f-" s
® . m .-q‘. o .I'.
.- -‘4".-.':' :.".,“n 4
o Pt gl R
® . o aw
.’"'": :-;.'1 -:-.'l"_ 5' -"".. -.E '.\ ®
s "4 » £ 2" o %o '.
Coeigtege s g ".’1". ™ .-4". .
- " ‘l,’ :|'-| -t‘ ‘.if :- 5 L - @
* ey e i e n ..-ﬁ.- & PR
' ..". » Pl T 4.- ]
3 .1;'- -""“-i “":". »
E '.l': ;"".‘:-":f"v .‘i.=-l"
.'- Yol » --'!- it :- ‘4-“
:i.rl. . ‘-.-‘ -r‘ﬂ.‘ :r
Lo Vs
. .

Figure 11: Example: W-S Network, N=500, K=4, p=0.2
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However, Random graph does not fit other characteristics such as currency center structure
and incomplete market though it do represents some key features of interbank market. For
example, Through analysing 39 banks in Hungary, Lubldy (2005) found out that there were

several currency center in Hungarian bank market. Figure 12 shows his result

Figure 12: Hungarian Market: Several currency center, built by Lubléy in 2005

Through the examples above, it can be found that the interbank market network con-
structed by the existing simulation models is static, and most of them simply assume that
the interbank market network is a specific structure, such as random network, scale-free net-
work, etc. However, the actual inter-bank market network is highly complex. The inter-bank
creditor-debt relationship depends on the behavior of banks, and the behavior of banks is con-
stantly changing over time. Therefore, the actual network structure of the inter-bank market
should also evolve dynamically. Therefore, the existing inter-bank market network structure
model cannot accurately reflect the formation mechanism of the inter-bank market network.
In view of this, this chapter firstly constructs the bank’'s dynamic balance sheet; secondly, it
designs the interbank connection probability based on the bank lending scale and credit lending

risk appetite, and finally constructs the interbank market dynamic network.

3.2 Dynamic Network Of Interbank Market

Simplicitly, | assume that weighted mixed graph (directed and undirected connection both
exists) G = (V, E, X) is the Interbank market network, in which bank i and bank j have

connenction if and only if they have Inter-bank Lending relationship. V' is the set of banks
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and F is the set of Inter-bank Lending relationship. If bank 7 is not the currency center, then
bank i is creditor and bank j holds the debt, which means the directed edge e;; is from i to
j. On the contrary, there is a undirected edge between i and j if ¢ is a current center. Matrix
X = (%ij) y v is the amount of Inter-bank Lending, it can be regarded as the weight of edge
between i and j. Then we build the model based on the Inter-bank Lending and Balance sheet

as follows

3.2.1 Balance Sheet

The balance sheet of a bank is very complex. In this section, | just choose a very simple form to
discuss. Assume that asset of bank j includes external investment [, interbank borrowing L;
and current assets M;, debt of bank j includes deposit D;, interbank lending B; and owners’

equity £;. By accounting equation (David Romer, 2009), we have
[j+Lj+Mj:Dj+Bj+Ej. (31)

Suppose that at time zero, the asset of bank j is BA(])- = BA;(t = 0) and E]Q = ocBA?,
B? = 6BA?, and MJQ = 'yBA?.

If Bank ¢ lends money from bank j, then

x?szEBg?/ > By, (3.2)

k:jENy

Otherwise x; = 0. Thus L; is given by
L0=%"a. (3.3)
k
Since EY = aBAY and B) = fBAY, we have
E} =a-BA} =B} -a/3. (3.4)

Similarly,
M} =~-BA) = B -~/B. (3.5)

j i
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Since BA; = D; + B; + E;, we have

DY=BAY—E) - BY=B"-(1-a-p)/5.

By equation (3.1), we have

I9=BA)— L= M) =B} - (1-~)/8— L. (3.7)

In addition, it requires that the investment should be more than the borrowing, which means

0 0 0 < 0 _ 0 0 0_ no 0 0 0 0 0 0 0
0, which implies 5+~ < 1.

3.2.2 Renew Balance Sheet

| build a stochastic model for deposit D;:

dD;(t) = r(t)D;(t)dt + o, D;(t)dW; (1), (3.8)

where 7(t), o; are real constants representing the short interest rate, and volatility respectively.
(Wi(t),...,Wn(t)) are indepenent wiener process.
For example, the short interest rate for every 3 month in UK is shown in Figure 13.

018 1

o o
- [=2]

<
¥
T

Short Interest Rate UK

0 0.1 02 03 04 05 086
t

O.‘? OjB OfQ 1I
Figure 13: Yahoo Database: UK Short Interest Rate, time gap: 0.01 means 3 months in reality

| replot r(t) with different time gap. In Figure 13, 0.01¢ means 3 months in real world.
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By equation (3.8) and data shoen in Figure 13, | use Weak-Euler scheme[?] to simulate

D; in UK market, the simulation of Halifax Bank (UK) is shown in Figure 14.

D(Billion)

09r ""II. A .NI‘

Y
0.8 r !

0.7

Figure 14: Example: Deposit, 0 = 0.36, time gap: 0.01 means 3 months in reality
Then the owner asset is given by
Ef= B 4l ot (L = B = DI, (3.9)

where 1 is the average return of investment, 7¥ is the interest rate of borrowing and r¢ is
the interest rate of deposit. | assume the r¢ = r(¢) and in ¢ = r(¢) + 0.02 in (3.9). By

equation(3.4) and (3.6), we get
Bl =3 BA, = (D! +El)-8/(1-B). (3.10)

Similar to equation(3.2) and (3.3),

vi; = BiBj/ > B (3.11)
k:jEN,
and
L= at, (3.12)
k
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By equation(3.10), we have
M} =~ BAj = (Di+ EL) -y /(1= B). (3.13)
Since BA; = I; + Lj + M;, we get
I' = BAY — Lt — M! = (D! + EY) - (1—7)/(1— 8) — L. (3.14)

In addition, it also requires S 4+ v < 1 when renew the balance sheet.

3.2.3 Build Interbank Market Network

The construction process of the inter-bank market network is mainly based on the following
two assumptions:

1)The banks with small amount of asset always tend to lend money to large banks because
it can lower the risks. However, large banks always consider the interest rate of borrowing,
and they prefer to spread their funds to different small banks, so as to spread risks as much as
possible and obtain higher returns. This assumption means if bank i's borrowing B; is much
bigger than bank ¢'s borrowing B, then i tend to lend money to j. If B; is much smaller than
B, i still tend to lend money to j.

2)Inter-bank lending is generally short-term, and can only be used as a short-term invest-
ment for currency profit and lower risk, not as a long-term investment and financing method.
Therefore, the structure of the banks market network should change simultaneously with the
inter-bank lending.

Based on assumption 1) and 2), | build the model as follows:

At time t ((0 <t < T), the probablity that there is an edge between bank i and bank j
is given by

pl;=1—exp (=X (B!/B! + B/B} -2)) (3.15)

In equation (3.15), we use Bf/B;f to assess whose interbank lending is bigger. Based on

assumption 1), p; ; should satisfies when Bj > B! or B; < B}, p;; — 1. If we draw the

27



figure of equation (3.15), we will see it satisfies assumption 1) very well:

Bi/Bj

Figure 15: Probablity that ¢ connects j against B;/B;, A =1

The reason why | choose B}/B! + Bj/Bj — 2 is p;; should plunge when B; — B; and
increases slowly when B! > B;. As shown in Figure 15, this model is suitable for describing
connection probablity.

| will produce a variable U follows uniform distribution between 0 to 1, if U is samller than

pﬁyj then there would be an edge between bank ¢ and bank j and the edge is from i to j when

1 is not the currency center.

If i is a currency center, normally with a large B; so that B << B! and B}/B}+ B!/B} —

~+00, pij — 1. In this case, the edge between ¢ and j is undirected.

Obviously, p;j is monotonically increasing with the parameter \. and we have

B!/B\+ B/B! > 2\/B!/B} - B/B! =2

Thus, exp (—)\ (Bf/B; + Bf/B} — 2)) € (0,1], p}; € [0,1), which satisfies the require-
ments of probablity.

3.2.4 Interbank Market Network

I set a = 0.05, 3 =0.1, y=0.05, A =1, and T' = 240, time gap is 1, which means 3 month
in reality. the gap between (a), (b), and (c) is 120.

28



Figure 16 shows that Swiss market is a two-center market with sparse-cluster structure.
This network includes 150 largest bank in Switzerland, and the data (Database: Yahoo
Database) indicated that there are two currency center in Switzerland. One is UBS whose
amount of asset is 9780 billion dollars in 2021 and the other one is Credit Suisse whose amount

of asset is 8580 billion dollars while Raiffeisen ranks third with 2290 billion dollars.

(a) t=0 (b) t=120 (c) t=240

Figure 16: Swiss Market, time gap: 1 means 3 month in reality

Figure 17 shows the structure of Chinese bank market. This network contains 500 largest
banks in CHina. There is a large bank named China bank almost dominates the bank market,
its amount of asset is 35578 billion dollars. When t=240, you can see the most of banks'’
probablity of connection is lower because the Covid-19 in China while the edges coming from

China Bank is more than usual.

(a) t=0 (b) t=120 (c) t=240

Figure 17: Chinese Market, one-center, N=500
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Figure 18 shows the structure of UK bank market. This network includes 400 largest
banks in UK. There are 4 currency centers in UK. They are The Royal Bank of Scotland,
HSBC bank, Barclays and Lloyds Banking Group. In recent years, Standard Chartered grows
rapidly, ranking fifth in UK market with 6479 billion dollars in 2020, so you can see there are

5 centers in 18(c).
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Figure 18: UK Market, four-center, N=400

3.3 Risk Spreading Model

When risk walks along the network through the Inter-bank Lending behavior, it is naturally to
consider its 'Infection’ as an epidemic. Thus some model of epidemics is suitable for simulating
the risk spreading on interbank network. In this section, | will introduce a classic model named

SIR model and simulate it on network shown in section 3.2.4.

3.3.1 SIR Model

Assume that total population N is a constant number in short term, and S = S(t) is the number
of susceptible individuals, I = I(t) is the number of infected individuals, and R = R(t) is the
number of recovered individuals.

Moreover, assume that s(t) = S(t)/N is the susceptible fraction of the population, i(t) =
I(t)/N is the infected fraction of the population, and r(t) = R(t)/N is the recovered fraction

of the population.
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Generally, SIR model is written as ODE form:

ds

i —bs(t)i(t)

di

— =bs(t)i(t) — k2

= bs(0)i(t) — ki) 1)
ﬁ = ki(t)

dt

st+i+r=1

In equation(3.16), We assume that the population is fixed and ignore births, death and
immigration. On average, each infected individual generates bs(t) new infected individuals per
day. We also assume that a fixed fraction k of the infected group will recover during any given
day.

Actually, when N is very large, i(t) and r(t) can be regarded as the probablity of an
individual get infected and recovered respectively. Thus | build another SIR model which is
written as stochastic equation.

In a weighted, mixed graph G=(V,E), The banks is described by an N x N matrix A (the
adjacency matrix of G). Assume that node j is the neighbor node of node i and at time t,
node j get infected but node i does not, then we obtain the following system of stochastic

differential equations:

dPi(t) = [psi(t) (1 = Fi(t)) — 6P,(t)] dt + o3 (Pi(t)) si(t) (1 — Fi(t)) dWi(t),
s(t)=3 B ®) oy, G17)
jeo, 2jen; ijWij

where 1 is a positive constant number, €; is the set of i's infected neighbors. wj;; is the
weight between i and j. (Wi(t),...,Wx(t)) are independent wiener process. P;(t) is the
probablity that node i get infected by its infected neighbors at time t. s;(¢) can be regarded
as the strength of the infection that may from infected neighbors of bank 7 to itself through

the network.
During the infection processes, the P;(t) should strictly remain in [0,1]. System (3.17)

has two very good features when simulating P;(t), the two main theorems is shown below:
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Theorem 1. At time zero, for any condition P(0) = (P;(0),..., Px(0)) such that P(0) €
[0, 1], there exists a unique solution to equation(3.17) and the solution remains in [0, 1]V.
A quik way to see that the solution remains on [0, 1]V is to note that for any P € 9[0, 1]V

the scalar product between f(x) and the outward normal vector v(z) is

(f(x),v(z)) <0, Peal0,1]",

and that the diffusion terms is orthogonal to the outward normal vector v(x) :

(g(x) -y,v(x)) =0, forallycRY Peolo1]".

STEFANO(2016) gives another method to proof this. The proof gives some stronger theory
about stochastic SIR model.

Theorem 2. the null solution for (3.17), is stochastically asymptotically stable in (0,1)%,
which means that X is stochastically stable and

lim P[P(t) = 0] = 1,

t—o00

for all X(0) € (0,1)".

The proof of Theorem1 and 2 see appendix A.

Figure 19 shows the probablity of infection of HSBC bank in UK interbank market. As it
shows, the probablity of infection will decrease as time goes by and it remains in [0,1]. In
addition, it has mean-reverting dynamics as well.

At time t, the recovery rate of node i is given by

dri(t) (01 — Oors(t)) dt + y/FidWi(2). (3.18)

where 0y, 05, 7y are positive constants and 20; > ~2. Equation(3.18) is a very classic model

for short interest rate named CIR model. | choose this model because it has mean-reverting
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Figure 19: Example: Probablity of infection, HSBC bank, ;1 = 4.1, 0 = 0.36, T=2

dynamics, and its expectation[?] is given by

Eqr(t) = 5(0)c " +

Figure 20 shows the recovery rate of HSBC bank in UK interbank market.
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Figure 20: Example: Recovery rate, HSBC bank, T=2

3.3.2 Parameter Estimation

0.4
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2

(3.19)

When simulate SIR model in network, another problem is the parameter of the recovery rate.

Recall the recovery rate function
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In order to determine the values for the 6 parameters in equation, certain parameter estimation

techniques were used. First, the successive r(t) term is defined.

Next, an ordinary least squares regression (OLS) process was implemented, resulting in a
response vector to build our version of equation (??) to use in the parameter estimation, and

solve for # and . The OLS scheme gave the following:

Y = BIX + 50 +e. (322)

Note that here Y = (ry,...,r,) is the response vector, and X = (r¢,...,7,_1) is the initial
column vector.

Using equation (3.22), the 6 parameters were finally estimated as follows:
1= sdR)

= — . 2
92 At , 0 At (3 3)

Bo

91 = At

€ €

where sd(ﬁ) is the standard deviation of vector = and e is the residual of the OLS estimation.

This estimates the values of our model to be:

0, = 0.24044417; , 0, = 0.4481835, ¢ = 0.025655528 (3.24)

3.3.3 Simulation On Network

| choose UK Interbank market as example, select patient zero (get infected at time zero)

randomly. Set T=11, P(0)=0.4 for all nodes, and r(0)=0.1 for all nodes. The green node
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is susceptible banks, red node is infected banks, and blue node is the recovered banks. The

results is shown below (time gap between pictures: 1)
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Figure 21: Example: SIR model in UK bank market, T=11
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The number of three different nodes is shown in Figure 21

400 1
350
300
250
—— Susceptibles
200 4 —— Infectious
—— Recovereds
150 A
100 A
50 o
D -

0 2 4 6 8 10 12
Figure 22: Example: Number Of three nodes
As shown in Figure 21 and 22, most of the infected banks can be recovered itself, but
there must be some banks can not recovered before T or get infected again after recovering.

Thus in next section, we will predict which bank in graph is more likily to be infected and help

government with changing network structure by changing inter-bank lending behavier.
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4 Graph Neural Network and Prediction

In section 3, | introduce the dynamic network of interbank market and the stochastic SIR
model on network. In this section, | will use the infection model to predict which location on
network is most likly to be infected when a financial crisis occurs to help government assist
the banks in danger or rewire the inter-bank lending connection before the crisis. The first
method is classic Monte-Carlo method which is widely used in prediction. The second method
is Graph Neural Network. Besides, the training sample of Graph Neural Network is also comes

from the result of Monte-Carlo method.

4.1 Monte-Carlo Method

The basic logic of Monte Carlo method is simple. Take UK market network as example, | run
the SIR model on network for M=100000 times, and record the proportion of susceptible times,
infected times, and recovered times of each node. In this section, the bank is in danger means
more than 10000 times (10% of M times) during the loop, the bank get infected (colored by
red in figures). Then if the times of a bank getting infected is less than 10000 and the times
of being recovered (colored by blue) is more than 60000 (60% of total), it would a recovered
bank.

Moreover, will the characteristics of graph influences its fraction of dangerous banks when
finacial crisis occurs. For example, will the node with larger cluster coefficient becomes easier
to be infected during the crisis? And the node with larger centrality (i.e Degree, Closenessand
Betweenness e.t.c.) may be in danger in most of cases. The bank structure with smaller
average shortest path may be more dangerous. | will discuss more details later.

Figure 22 shows random 12 figures in M=100000 times running. In this example, | choose
Uk interbank market network, select two patient zero randomly. Set T=11, P(0) = 0.4 for all
nodes, and 7(0) = 0.1 for all nodes. The green node is susceptible banks, red node is infected

banks, and blue node is the recovered banks. All figures below is at the same time T=11.
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Figure 23: Example: Monte-Carlo Method, T

Surprisingly, the currency center in UK market is not likily to get infected in the model

while the banks which have large Interbank market lending with currency center are in danger.
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The main reason of this situation is currency center tends to spread risk to many smaller banks
through Interbank market lending so that it always have a larger recovery rate.

In other bank networks, the characteristics of the graph strucure have influence on how
dangerous the structure will be. Figure 24 shows the proportion of dangerous banks against
average clustering coefficient of graph, T=11. | choose 15 different bank graph to plot the

scatter picture
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Figure 24: The fraction of dangerous banks against average cluster coefficient, T=11

Figure 25 shows the proportion of dangerous banks against average shortest path of graph.
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Figure 25: The fraction of dangerous banks against average shortest path, T=11

Basically, when average cluster coefficient and average shortest path decrease, the edges

between nodes increases (see Figure6), the graph tends to be more dangerous but this trend
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is not obvious as the average shortest path decreases.

4.2 Graph Neural Network

In setion 4.1, | introduces the Monte-carlo method to analyse the node in network. It is a
very accurate method to predict the infection process. However, Monte-Carlo method always
wastes lots of time in application. Naturally, we will use a new method which is not so
accurate but more swift to do the prediction. One of the effective method is called Graph

Neural Network.

4.2.1 Graph Embedding And Deepwalk

Graph Neural Network is very similar to traditional neural network such as CNNs and RNNs.
However, the input layer of neural network is always a data matrix rather than a graph. Thus
the first problem is how to learn the structure of the graph and transfer the information of
graph to the input vector. The method to solve this problem is called Graph Embedding, and
one of the most important method of Graph Embedding is Random Walk.

Figure 26 shows the process of Random Walk. As it shows, Random walk is to perform
random walks on the graph structure composed of nodes to generate a large number of
nodes sequences, and then input these item sequences as training samples in word2Vec that
is introduced in next section.

Random walk is a bit like simulating how the epidemic walks along the network and
those sequences is the infection sequences show how the epidemic infect from patient zero
to susceptible individuals. For example, one of the sequences 'A-B-E-F’ in Figure 26 means
B get infected by A, then E get infected by B e.t.c. Then we use those infection sequences
to learn the information of the infection network and after that we get the sequences used as
input layer in word2Vec.

Let G = (V,E) is the interbank network. Given a partially labeled network G =
(V,E,X,Y), where X € RVI*S where S is the size of the feature space for each attribute
vector, and Y € RIVIXIYl where ) is the set of labels.

The random walk generator firstly takes a graph GG and choose randomly a node v; as the
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root of the random walk W,.. A walk samples uniformly from the neighbors of the last node
visited until the length of our walk L is big enough. | will set the length of walk fixed during

the simulation.
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Figure 26: Random Walk

As Figure 26 shows, the Random Walk is divided into 4 parts

1)Constructed the graph g

2)Randomly select the root of walk such as (A,B,C,D,E,A).

3)Then walk from the root for length L to get the sequences of infection. Like 'A-B-E-F’
is one of the sequence and length of this walk is 4.

4) inputs these sequences into the word2vec model to generate the final Embedding vector,
the word2Vec model will be introduced in next section.

The key problem of Random Walk is on part (3). The probablity of walk from node v; to

node v; usually is given by

s Vi € Ny (vi),
P ('Uj ‘ Ui) _ Z]'GN+(U1.)W1J (41)

0, else

where W;; is weight of edge between i and j, and A = (a;;)nvxn, N (v;) means the set of
t's neighbor nodes. For example, if ¢ have 2 neighbor nodes, and the weight of them are both
50. We generates a variale U following Uniform distribution in [0,1]. Then divide [0,1] into 2
parts [0,0.5], (0.5,1] and see which part does U locate, then we get a walk sequence from i

to one of its neighbor node.
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4.2.2 Word2Vec

In last section, we have mentioned embedding vectors is generating by lots of walk sequences.
In this section, we will use a very famous language model named Word2vec to solve this
problem.

The main goal of Word2vec is to estimate the probablity of a specific sequence of words
appearing in a corpus. Assume the given word xj, and the output will be the whole sentence
{y1,...,yc}. For example, the sentence is 'l drive my car to the store’. If we input 'car’ as
the input layer, then the output will be { 'I', 'drive’, 'my’, 'to’, 'the’, 'store'}. The Figure 27

shows the its basic logic of Word2Vec.

INPUT PROJECTION  OUTPUT

w(t-2)
% w(t-1)

w(t) _4-~ “
\ w(t+1)
| w(t+2)

Figure 27: Word2Vec

By Random walk, we get lots of sequences such as 'A-B-E-F', and 'E-C-B-A’ (see Figure
26). Those sequences are the sample of the WordVec model. For example, if 'A-B-E-F' is
'I'-'drive’-'my'-'car’, then Word2Vec will output 'A,E,F" if we input 'B’.

Figure 28 shows the input and output when traing Word2Vec model. As it shows, We

input the one-hot code vector = of a single input sequence. For example, 'A-B-E-F' is the
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vocubulary sheet. Then one-hot code of B is a 5-dimensional vector with 1 in second position
of vector while others are all zero: (0,1,0,0). Similarly, Ais (1,0,0,0), Eis (0,0,1,0) and F
is (0,0,0,1).

Output Layer
Softmax Classifier

Hidden Layer
Linear Neurons

Z ;

Probability that the word at a
randomly chosen, nearby
position is “abandon”

Input Vector

... “ability”

4

OlOIO

A "1’ in the position .. “able
corresponding to the
word “ants”

[e]le=]o]e]e]e[=]o]

(=]

: |

300 neurons

10,000
positions
.. “zone”

o

10,000
neurons

Figure 28: Input and output of Word2Vec

Figure 29 shows the how Wors2Vec generates Embedding vector of graph. Assume output
vector is {y1,...,yc} (see Figure 29), where y,. is a V-dimensinal vector whose all elements
Yc,; remains in [0,1] and Zle y. = 1. Although Word2Vec is used to output 'AE,F’', what
we actually do is estimating probablity for each of words. For instance, If the index of biggist
number in . is 1, then the c¢'* word is 'A’. If the index of biggist number in v, is 2, then the
¢ word is 'B’ e.t.c.

{y1,...,yc} is called the Embedding vector of the graph. What we really want is Embed-
ding vector which can be input layer in GNNs (see section 4.2.4) instead of 'AE,F. Now we
can build Word2Vec model in our specific problem:

Assume the sample is given by the random walk sequences {{A— B—FE—-F —...!/E —
C—D—H-—..!, ...}, which includes V different nodes in total. Firstly, we code each node
as one-hot code (i.e A for (1,0,0,...)y). Those one-hot code are the input vector = shown

in figuer 29.
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Figure 29: Output layer of Word2Vec

Secondly, we train the model as follows:
Since the i column of weight matrix W represents the weight of i** code of input word
and the zero elements will not influence hidden layer. if x;, = 1 then the hidden layer h equals

to the k" column of the weight matrix, which is given by

h=x"Wy oy = W, (4.2)
For example ) )
a b c
d e f
OOOlOXghiZ{jkl}- (4.3)
g k1
m n o

then the output layer u.; is given by

u. = Wh. (4.4)
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At last, we use softmax function to get output {yi,...,yc} by output layer u;.

— exp (u;)
ol Y _exp (ug)

(4.5)

Then we can determine which word in vacabulary sheet is most likily on the 3. location, which

means

P (Wo.e | Wi) = ye; (4.6)

Then we can write down the loss function of this neural network:

C
minE = —log H p(wo. | wi)
c=1

exp ()
= —log
1:[ , _, €Xp (uCJ)

By Backpropagation algorithm (BP) (Gareth James, Statistical Learning) of classic neural

network and stochastic gradient descent algorithm (SGD), we get the W’ = (wj;) nxv is given

by
C
w(new ) =wj(old)—n-> (yoj — teg) - hi. (4.8)
c=1
and W is given by
(old) vV C
wine) — u - Z Z Yej = tej) {j " Xj- (4.9)
j=1lc=1

where 7 is study rate.
Then we can write down the algorithm of Word2Vec and Deepwalk. The are all shown

below

Deepwalk: (G,d,n, L)

Input: graph G(V, E'), dimension of embedding vector d, the number of walks n,
Walk length L, and window size w

Output: embeding matrix X € RIV*? for each node v; points to a vector x € R
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1. Initialization weight matrix W, sample X € RIVI*? to get training set of Word2Vec
2. Build a binary Tree T' from V'

3. fori =0 ton do

4. R = Shuffle(V)

5. for each node v; € R do

o

Sequences W,, = Random walk (G, v;, L)
7. Word2Vec(X, W,,, w)

Word2Vec: (X, WV,,)

1. for each v; € W,, do

2. for each uy, € W,,[j —w : j + w] do
3. E(W)=—%logPr (uy | W,v;)
4. W=W—n*g—£

4.2.3 Graph Embedding Results

| shows 3 examples of the results of Graph Embedding inthis section.

Figure 30(a) shows the global interbank market network which contains 2405 banks in
total. Figure 30(b) shows the Embedding results of this graph. The Embedding vector is
10-dimensional and | use TSNE function (similar to PCA method) in python to lower the

dimensions to draw the embedding picture(b)

&0 e B

e 1

“ .6

20 : 153

0 e 12

e 15

=20 » 16

e 9

40 e 10

e 3

-60 e 1N

e 4

60 40 -0 0 n o

e 2

e 14

(a) Global network (b) Graph Embedding Results (10-

dimension)

Figure 30: Embedding results of global bank network, N=2405
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As shown in Figure 29, the nodes whose partial structure are similar will have similar
embedding vector because the random walk sequences of those nodes is very similar, so those
nodes will be colored by same color in TSNE model.

Figure 31 shows the result of graph embedding of UK bank market which contains 400

banks in total.
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NG (b) Graph Embedding Results, lower dimen-

sion by TSNE method
(a) UK network

Figure 31: Embedding results of UK bank network, N=400

Similarly, the nodes have similar sequences will have same color. Note that 5 currency
centers of UK market is colored by orange in 31(b)
Figure 32 shows the result of graph embedding of Swiss bank market which contains 150

banks in total.
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Figure 32: Example: Swiss Bank Market, N=150
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The embedding result 32(b) is symmetric because Swiss market network is a 2-center

market that has symmetric structure.

4.2.4 GNNs

In section 4.2.3, we have generated embedding vector which is input layer in Graph Neural
Network. In this section, | will introduce how to construct the whole Graph Neural network
(i.e GCNs).

Figure 32 shows the process of GNNs

Raw Embedding Instance Input GCN/GAT OQutput Ground
Input Layer Normalization Layer Layer Layer Truth
_d I
mini-batch
°“ize%555555555555;": Ty B oiisecioioood
—A‘, P ) ;
T , R
-V vertex R et Vi
P IV n features "5 ,':'7 """ T

< "‘. L R T
LY . [ action status | |} :_
=4l I L
— —L Y= |

Figure 33: GNNs

As shown in Figure 33, we have already got the input vector, and GCN layer is very similar
to the CNNs. Thus we write the problem in mathematical way.

As we discussed in section 4.1, the banks in interbank network is divided into three cate-
gories: dangerous, potential patient, and recovered, which is denoted by 1, 2, and 3 respec-
tively. Then what GNN do is classifying all nodes in a network to 1, 2 or 3. It can help
government with clarifying which banks’ connection is not healthy in interbank network.

Firstly, we use Monte-Carlo method to get sample from 467 graphs including 2405 banks

in total. Then each bank in each graph is labeled with

1 Infection
Yj =4 2 Susceptible (4.10)

3 Recovered ,

where j =1,2,...,p.
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Then we assume that the output of nueral network is (f1(X), fo(x), f3(z)) € [0,1]P*3,
where f;(X) = P(Y = | X) is the p-dimensional probablity vector for all banks in one graph.
Although the model is used for classification, what we actually do is estimating probablity for
each of 3 classes. Then the banks are assigned to the class which has the highest probablity.

The process of GCN is shown in Figure 33.

Input
layer

Hidden

i layer L;

Hidden

layer Lo
Output

X2 layer

%) Y

HhX)— 1

_}-fa(X) %]

B
XP Wl

Figure 34: GCN

Thus, the loss function of the problem is given by
P 3
j=1i=1

The first hidden layer L, is given by
1) M, N, 0
A/,(C =0 |wy + Zwkj X, (4.12)
j=1

where o() is activation function. | use sigmoid function between last hidden layer and output

layer to confirm f;(x) is not zero. And in other hidden layer, | use ReLU function. Those two
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activation function is given by

e* 1 ReLl 0 if 2 <0
- 14 e2 - 1+e_z7 € : g(’Z)—(Z)Jr—

sigmoid :  o(2)

z otherwise .

The second hidden layer is given by

p
A g (w;g> s w;;>,4,9>) | (@13)
j=1

The other hidden layer is similar to equation(4.16) and (4.17). And the output layer is

given by

K>
Zi= B+ BuAl. (4.14)
=1
At last, we get output layer Z, then the output f;(x) (i=1,2,3) is given by

eZi

fi(X):P(Y:i]X):W.

(4.15)

By Backpropagation (BP) algorithm and Stochastic gradient descent (SGD) algorithm, we

can do the training and prediction now.

4.3 Training And Prediction

In this section, | will use GNNs introduced in section 4.2.4 to predict the role of banks in
interbank market network. Moreover, | will discuss further about whether the characteristics
of each graph influences the accuracy of prediction.

Sample contains banks in different countries in different years, and it is about 437 graphs
and 2405 banks in total. Training set contains 70% (306) of the graphs. And validation set
contains 131 graphs including 1233 banks in total.

Firstly, we use Monte-Carlo method to label each bank in each graph. Then the Graph

Neural Network will train the graph in training set to get the weight matrix WW. At last, model
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will use weight matrix W to label each bank in each graph in validation set. Note that some
of the banks are not domestic banks but it do occurs in domestic graph. For example, HSBC
bank is one of the currency center in UK market and it is also important in Hongkong market.
And most of banks participates in USA bank market, so the result of USA is typical.

The accuracy of prediction in USA market is shown in table 1.

3 (Recovery) | 2(Susceptibles) | 1(Danger) | Total(prediction)
3 697 2 37 736
2 21 11 7 39
1 75 0 113 188
Total(Truth) | 793 13 157 963

Table 1: The number of banks classified correctly in USA market, N=963, T=11

Note that the data in diagonal of Table 1 are the banks predicted correctly. For example,
we get 793 banks is '3" in USA by using Monte-Carlo method, and 697 of them is assigned to

'3" by graph neural network. Then the accuracy rate of classification is given by

(697 + 11 + 113) /963 = 85.25%

Another example is the German bank market. The resuts is shown below

3(Recovery) | 2(Susceptibles) | 1(Danger) | Total(prediction)
3 311 0 11 322
2 7 3 4 14
1 58 1 32 91
Total(Truth) | 376 4 a7 427

Table 2: The number of banks classified correctly in German market, N=427, T=11

The accuracy rate of classification in Germany is given by

(311 + 3 + 32)/427 = 81.03%
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The average cluster coefficient of USA network is 0.1288570065060429 while the average
cluster coefficient of German netwok is 0.5654755218490474. Thus we firstly assume that
when The average cluster coefficient decreases, the GNNs maybe performs better becuase the
embedding vector is more accurate in descrbing the structure aroud a specific node when the
graph become more sparse.

Figure 35 shows the relationship between accuracy rate and average cluster coefficient of

131 validation graphs.
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Figure 35: Accuracy rate against average cluster coefficient

Basically, the assumption is right, but the trend is not obvious when the average cluster
coefficient exceeds 0.4.
Figure 34 shows the relationship between accuracy rate and average shortest path of 131

validation graphs.

Accuracy Rate

o
0.79 o =

0 0.5 1 1.5 2 25 3 a5 4
Average Shortest Path

Figure 36: Accuracy rate against average shortest path
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This trend is more obvious. When the average shortest path increases, the accuracy
decreases. As we discussed in section 2 and 3, the interbank neteork have small-world char-
icteristic, which means its average shortest path is smaller than other random graph. As shown
in Figure 36, most of graphs’ average shortest path remain on [0,0.5]. And banks in graphs
whose average shortest path is large are usually small banks and have less connection with
each other. Those banks are difficult to predict even Monte-Carlo method doesn’t work well

on those graphs.
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5 Conclusions

5.1 Conclusion

On the basis of the current research, there are some areas that need to be improved in the
inter-bank market research. This paper is based on complex network and neural network. The
following main conclusions are drawn through model:

(1)Construction of Dynamic interbank network

We build the interbank network baased on the Inter-bank Lending procedures. The simu-
lation shows that the interbank network has small world character, which means it has small
average shortest path and large average cluster coeffienct. In addition, a few banks have large
degree centrality which is called currency center while most of banks have similar, small degree
centrality. The structure of network remains dynamic stable in short term as short interest
rate changing.

(2)Build the stochastic SIR model.

We build stochastic SIR model based on its original diffetential equations’ (ODEs) form.
The dicussian and simulation shows that both infection probablity and recovery rate has mean-
reverting dynamics and their result always remains on [0,1].

(3)Applied SIR model on interbank network.

We use stochastic SIR model to simulate how the financial crisis is 'infect’ through the
Inter-bank Lending. The simulation shows that the graph structure with short average shortest
path and small average cluster coeffienct magnifies the risk of infection during the crisis because
more connections have been set up.

(4)Use graph neural network to do the prediction.

We use graph neural network to do the prediction because Monte-Carlo method wastes lots
of time. Though the classification of neural network is less accurate, the simulation shows that
the accuracy always remains above 75 % during the experiments. In addition, The accuracy of

Graph neural network is stable but it is more accurate when average shortest path decreases.
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5.2 Further Work

Since the interbank-lending is more complicated in reality, there are more problems require
furthet reasearch in the future:

1) The balnce sheet of a bank includes lots of items instead of several essential parts such
as deposit and investment. Moreover, deposit is not only determined by short interest rate, so
the stochastic model driven by short interest rate does not descibe deposit well.

2) Random walk still wastes lots of time when network is large. Since its mechanism is a
bit like Breadth First Search (BFS). Some new methods proposed recent years such as LINE
(MIT 2017) and EGES (Alibaba 2018) are better, those methods are related to Depth First
Search (DFS).

3) When the graph is very large, to many neurons and hidden layers may cause over-fitting
problem, some classic method such as randomly drop out some neurons or regularization still
work in solving over-fitting problem. The regularization means add parameter to loss function,

which means the new loss function is given by

minimize loss function + X || W |[3),

where W is parameter matrix and || W ||;= > w;; is 1-norm of matrix W.
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A Proof Of Important Theorem

A.1 Proof Of Theoreml

Assume that function F:(0,1)Y — R* is given by

Zlog z;i(t) (1 — z4(t))] (A.1)
By It6's formula we get
=3 (70— o) s (1 = ) = )t 3 () s (1= ) du ()
R (A.2)
1 1 2 2 2
22( ) x?)g () s; (1 —uay)” dt
We rewrite equation(A.2) as
dF(X(t)) = LF(X(t))dt + dM(t) (A.3)
where N
LE(X(t) =" (1 _133 - ;) (Bsi (1 — x;) — dz;)
Hl N ) ' ) (A4)
+ 5 Z <(1 o) + $2> 0% (z;) 52 (1 — z;)°
and

M0 =3 [ (=~ ) @S0 O - a0) dn. (4s)

Lemma 1: If the coefficients of the equation are locally Lipschitz continuous, There will
be a positive constant number K such that LF(X) < K VX € A.

Firstly, the coefficients of the equation are locally Lipschitz continuous, then exists a
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positive constant number M such that o;(z) in (3.17) satisfies

i\T .
sup 7il )§M, foreveryi=1,...,N (A.6)
ze(0,1) T
Since
sity= % ai;wi; 5 (t) <Y a; <N-1
j€Infected Zjelnfected A Wij N T
we have

1 1 1
5 <(2 + 2) o2 (x;) s? (1—x)" < ) M%fsf (1-— xi)Q < ]\/[Q(N—l)2

1—x) x; D) (1-— xi)2 22
(A7)
Note that this is the last term of LF(X(t)). Then we have
LR e) _i\[: ( : _1) (Bs; (1 — x;) — dxy)
_i=1 l—a; m ! i i
1Y 1 1Y ; ;
24 \(1—z)? a2 ) s; (1— A8
+2;<(1_%)2+x%>0 (z;) 82 (1 — ;) (A.8)
2z, — 1
< 2l N s b s
= 2 (1= ;) (Bs; (1 —x;) — dxy) + M*(N — 1)

Since function y(z) = f(“l”:i) (Bs(l —x) —o0x), x € (0,1) reachs maximum point when

o /s

Tr =

we have
\/Bs V6

LF(X) < N[B(N=1)+6+M*(N-1)*| = K (A.9)

Theorem 1. At time zero, for any condition X (0) = (x1(0),...,2x(0)) such that z(0) €
[0,1]Y, there exists a unique global solution to equation(3.17) and the solution remains in
[0, 1]%.

For any x(0) € (0,1)%, there would be a unique local solution on ¢ € [0, T"). The solution
does not converge when t > T.

Consequently, if the solution to (3.17) is global, 7. = c0. Vi =1,... N, let ng > 0 is large
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enough so that for z;(0) € (n—lo, 1— nio) Then for each integer n > ng, we define the 7T), as

follow

T, = inf {t €[0,7): min x;(t) <1/nor max z;(t) > 1— 1/n}

1<i<N 1<i<N

Then we need to show lim,,_,,, 7,, = oo. If not, there must be a positive constant number A
and € € (0, 1) such that

P{T, <A} > (A.10)

which means there is an integer n; > ng such that
P{T, <A} >¢ VYn>mn (A.11)
By Lemmal we have,
T AN T AX
/ dF(X(1) < / K dt + M(t) (A.12)
0 0
Take expectation of each side of (A.12), we have
E[F (X (T, AN)] <E[F(X(0)]+ KE(T, AX) <E[F(X(0))] + KX (A.13)
Since {7}, < A} for n > ny, there must be a z;(7},) such that equals to 1/nor 1 —1/n
1 1
F(X,(Tn)) > — <10g () +log (1 _ )) (A.14)
n n
By equation(A.13) and (A.14) and P{7,, < A} > € we have
F(X(0)) + KX > E[p,« F (X; (Tn))] > e(log(n) + 1) (A.15)

Let n — oo, we have

oo > F(X(0))+ KT = o0 (A.16)

Thus assumption (A.10) is wrong so that lim,, ., 7,, = oo holds.
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